分析 先将有理数m=2x2-6xy+5y2变形为(x-2y)2+(x-y)2,可知“世博数”m=p2+q2(其中p、q是任意有理数).两个“世博数”a、b,不妨设a=j2+k2,b=r2+s2,其中j、k、r、s为任意给定的有理数.
(1)a、b之积为=(jr+ks)2+(js-kr)2是“世博数”;
(2)a、b(b≠0)之商=${(\frac{jr+ks}{{{r^2}+{s^2}}})^2}+{(\frac{js-kr}{{{r^2}+{s^2}}})^2}$也是“世博数”.
解答 (1)解:∵m=2x2-6xy+5y2=(x-2y)2+(x-y)2,其中x、y是有理数,
∴“世博数”m=p2+q2(其中p、q是任意有理数),只须p=x-2y,q=x-y即可. (3分)
∴对于任意的两个两个“世博数”a、b,不妨设a=j2+k2,b=r2+s2,
其中j、k、r、s为任意给定的有理数,(3分)
则ab=(j2+k2)(r2+s2)=(jr+ks)2+(js-kr)2是“世博数”;(3分)
(2)证明:$\frac{a}{b}=\frac{{{j^2}+{k^2}}}{{{r^2}+{s^2}}}=\frac{{({j^2}+{k^2})({r^2}+{s^2})}}{{{{({r^2}+{s^2})}^2}}}(3分)=\frac{{{{(jr+ks)}^2}+{{(js-kr)}^2}}}{{{{({r^2}+{s^2})}^2}}}$
=${(\frac{jr+ks}{{{r^2}+{s^2}}})^2}+{(\frac{js-kr}{{{r^2}+{s^2}}})^2}$也是“世博数”. (3分)
点评 本题考查了因式分解的应用,掌握“世博数”的概念是解题的关键,注意“世博数”m=p2+q2(其中p、q是任意有理数).
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 第1 题 | 第2题 | 第3 题 | 第4 题 | 第5 题 | 第6 题 | 第7题 | 第8 题 | 得分 | |
| 甲 | × | × | √ | × | × | √ | × | √ | 5 |
| 乙 | × | √ | × | × | √ | × | √ | × | 5 |
| 丙 | √ | × | √ | √ | √ | × | × | × | 6 |
| 丁 | √ | × | × | × | √ | × | × | × | ? |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,$\frac{1}{2}$) | B. | (-∞,-3)∪($\frac{1}{2}$,+∞) | C. | (-2,$\frac{1}{3}$) | D. | (-∞,-2)∪($\frac{1}{3}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com