精英家教网 > 高中数学 > 题目详情
1.已知实数a,b,c,满足a2+b2+c2=1,则ab+bc+ca的取值范围是[$-\frac{1}{2},1$].

分析 由题意ab+bc+ca=$\frac{2ab+2bc+2ac}{2}$分别利用基本不等式的性质即可求解.

解答 解:由题意:a2+b2+c2=1
那么:ab+bc+ca=$\frac{2ab+2bc+2ac}{2}$≤$\frac{1}{2}$(a2+b2+b2+c2+a2+c2)=$\frac{1}{2}×2$=1,当且仅当a=b=c时取等号.
又a2+b2+b2+2(ab+bc+ca)=(a+b+c)2≥0,当且仅当a=b=c时取等号.
∴1+2(ab+bc+ca)≥0,
∴ab+bc+ca≥-$\frac{1}{2}$
所以得ab+bc+ca的取值范围是[$-\frac{1}{2},1$];
故答案为[$-\frac{1}{2},1$].

点评 本题主要考查了基本不等式的性质的变形运用能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.某三棱锥的三视图如图,该三棱锥的体积是(  )
A.2B.$\frac{2}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\frac{1}{3}$x3+x2+ax和函数g(x)=e-x,若对任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f′(x1)≤g(x2)成立,则实数a的取值范围是(  )
A.(-∞,$\frac{\sqrt{e}}{e}$-8]B.[$\frac{\sqrt{e}}{e}$-8,+∞)C.[$\sqrt{2}$,e)D.(-$\frac{\sqrt{3}}{3}$,$\frac{e}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=px+$\frac{q}{x}$(实数p、q为常数),且满足f(1)=$\frac{5}{2}$,f(2)=$\frac{17}{4}$.
(1)求函数f(x)的解析式;
(2)试判断函数f(x)在区间(0,$\frac{1}{2}}$]上的单调性,并用函数单调性定义证明;
(3)当x∈(0,$\frac{1}{2}}$]时,函数f(x)≥2-m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=sin(x-$\frac{1}{2}$),当0<x<1时,不等式f(x)•${log_2}(x-{2^m}+\frac{5}{4})$>0恒成立,则实数m的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知各项均为正数的数列{an}满足:an+12=tan2+(t-1)anan+1,其中n∈N*
(1)若a2-a1=8,a3=a,且数列{an}是唯一的.
①求a的值;
②设数列{bn}满足bn=$\frac{{n{a_n}}}{{4(2n+1){2^n}}}$,是否存在正整数m,n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{1}{x-1}$+$\sqrt{{2}^{x}-1}$的定义域是(  )
A.[0,+∞)B.(1,+∞)C.[0,1)D.[0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα=$\frac{3}{5}$,α∈(${\frac{π}{2}$,π),cosβ=$\frac{5}{13}$且β是第一象限角,求sin(α+β),cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,a,b,c分别是角A,B,C的对边,$\overrightarrow m$=(cosA+2sinA,-3sinA),$\overrightarrow n$=(sinA,cosA-2sinA),
(1)若$\overrightarrow m$∥$\overrightarrow n$且角A为锐角,求角A的大小;
(2)在(1)的条件下,若cosB=$\frac{4}{5}$,c=7,求a的值.

查看答案和解析>>

同步练习册答案