精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+xlnx(a∈R).
(1)当a=-
1
2
时,讨论函数f(x)的单调性;
(2)在区间(1,2)内任取两个实数p,q,且p≠q,若不等式
f(p+1)-f(q+1)
p-q
>1恒成立,求实数a的取值范围.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)先求出f′(x)f′(x)max=f′(1)=0,从而f′(x)≤0,得函数f(x)在定义域内递减;
(2)
f(p+1)-f(q+1)
p-q
=
f(p+1)-f(q+1)
(p+1)-(q+1)
,表示点(p+1,f(p+1))与点(q+1,f(q+1))连线的斜率,得f′(x)=2ax+lnx+1>1在x∈(2,3)内恒成立,得g(x)在(2,e)递减,在(e,3)递增,得2a≥-
ln2
2
,从而求出a的范围.
解答: 解:(1)当a=-
1
2
时,f(x)=-
1
2
x2+xlnx,定义域为(0,+∞),
∴f′(x)=-x+1+lnx,
令F(x)=f′x),F′(x)=
1-x
x

当0<x<1时,F′(x)>0,f′(x)在(0,1)递增,
当x>1时,F′(x)<0,f′(x)在(1,+∞)递减,
∴f′(x)max=f′(1)=0,从而f′(x)≤0,
∴函数f(x)在定义域内递减;
(2)
f(p+1)-f(q+1)
p-q
=
f(p+1)-f(q+1)
(p+1)-(q+1)

表示点(p+1,f(p+1))与点(q+1,f(q+1))连线的斜率,
又1<p<2,1<q<2,2<p+1<3,2<q+1<3,
即函数f(x)的图象在区间(2,3)上的任意两点连线的斜率大于1,
即f′(x)=2ax+lnx+1>1在x∈(2,3)内恒成立,
等价于当x∈(2,3)时,2a>-
lnx
x
恒成立,
设g(x)=-
lnx
x
,x∈(2,3),则g′(x)=
lnx-1
x2

若g′x)=
lnx-1
x2
=0,则x=e,
当2<x<e时,g′(x)<0,g(x)在(2,e)递减,
当e<x<3时,g′(x)>0,g(x)在(e,3)递增,
又g(2)=-
ln2
2
>g(3),
∴2a≥-
ln2
2

∴a≥-
ln2
4
点评:本题考查了函数的单调性,函数的最值问题,考查导数的应用,参数的应用,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)已知函数f(x)=ex,g(x)=kx(k∈R)
(Ⅰ)若k=e2,试确定函数f(x)-g(x)的单调区间;
(Ⅱ)若k>0,对于任意的x∈R,f(|x|)>g(|x|)恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(2x-k•2-x)log2|x|+
1
2x
,f(2)=4.
(Ⅰ)求k的值;
(Ⅱ)判断并证明函数f(x)的奇偶性;
(Ⅲ)若F(x)=f(x)+2且F(m)=10(m≠0),求F(-m).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,E是PB的中点,AB=2AD=2CD=2,PC=
2

(Ⅰ)求证:AC⊥平面PBC;
(Ⅱ)求三棱锥C-ABE高的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的曲线C由曲线C1
x2
a2
+
y2
b2
=1(a>b>0,y≥0)和曲线C2:x2+y2=a2(y<0)组成,已知曲线C1过点(
3
1
2
),离心率为
3
2
,点A,B分别为曲线C与x轴、y轴的一个交点.
(1)求曲线C1和C2的方程;
(2)若点Q是曲线C2上的任意一点,求△QAB面积的最大值及点Q的坐标;
(3)若点F为曲线C1的右焦点,直线l;y=kx+m与曲线C1相切于点M,且与直线x=
4
3
3
交于点N,过点P做MN,垂足为H,求证|FH|2=|MH|+|HN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个四棱锥的三视图和直观图如图所示,E为侧棱PD的中点.

(1)求证:PB∥平面AEC;
(2)求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人相约10天之内在某地会面,约定先到的人等候另一人3天后方可离开,若他们在期限内到达目的地是等可能的,则此二人会面的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,x∈R(其中ω>0)
(1)求函数f(x)的值域;
(2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为
π
2
,求函数y=f(x)的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,-1),B(5,1),直线l经过点A,且与直线3x+4y-10=0平行,
(Ⅰ)求直线l的方程;
(Ⅱ)求以B为圆心,并且与直线l相切的圆的标准方程.

查看答案和解析>>

同步练习册答案