精英家教网 > 高中数学 > 题目详情
一个四棱锥的三视图和直观图如图所示,E为侧棱PD的中点.

(1)求证:PB∥平面AEC;
(2)求三棱锥E-ACD的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:计算题,空间位置关系与距离
分析:(1)由图形可知,底面ABCD为菱形,设AC,BD的交点为O,通过证明OE∥PB证得PB∥平面AEC;
(2)三棱锥E-ACD的底面面积易求,高为四棱锥P-ABCD高PO的一半,利用锥体体积公式计算即可.
解答: 解:(1)由图形可知,该四棱锥的底面ABCD为菱形,
且有一角为60°,边长为2,锥体高度为1.
设AC,BD的交点为O,连接OE,OE为△DPB的中位线,
OE∥PB,OE?平面AEC,PB?平面AEC,
∴PB∥平面AEC
(2)S△ACD=
1
2
AD•DC•sin120°=
3

∵E为侧棱PD的中点,
∴三棱锥E-ACD的高是四棱锥P-ABCD高的一半,即
1
2

∴VE-ACD=
1
3
×
3
×
1
2
=
3
6
点评:本题考查几何体的直观图及三视图,考查空间想象能力,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)为R上的减函数,且f(xy)=f(x)+f(y).
(1)求f(1).
(2)解不等式f(2x-3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(-1,0)是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点,过F且与x轴垂直的直线被椭圆截得的弦长为3.
(1)求椭圆C的方程;
(2)设过点P(0,-3)的直线l与椭圆C交于A,B两点,点C是线段AB上的点,且
1
|PC|2
1
|PA|2
1
|PB|2
的等差中项,求点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班联欢晚会玩投球游戏,规则如下:每人最多可连续投5只球,累积有三次投中即可获奖;否则不获奖.同时要求在以下两种情况下中止投球:①已获奖;②累积3次没有投中目标.已知某同学每次投中目标的概率是常数p(p>0.5),且投完3次就中止投掷的概率为
1
3
,设游戏结束时,该同学投出的球数为X.
(1)求p的值;
(2)求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+xlnx(a∈R).
(1)当a=-
1
2
时,讨论函数f(x)的单调性;
(2)在区间(1,2)内任取两个实数p,q,且p≠q,若不等式
f(p+1)-f(q+1)
p-q
>1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将一副三角板拼接,使它们有公共边BC,且使两个三角板所在平面互相垂直,若∠BAC=∠CBD=90°,AB=AC,∠BDC=60°,BC=6.
(Ⅰ)求证:平面ABD⊥平面ACD.
(Ⅱ)求二面角A-CD-B的平面角的余弦值.
(Ⅲ)求B到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点A(3,
5
2
),B(4,
3
),C(-3,-
5
2
),D(5,0),其中三点在双曲线
x2
a2
-
y2
b2
=1,(a>0,b>0)上,另一点在直线l上.
(1)求双曲线方程;
(2)设直线l的斜率存在且为k,它与双曲线的同一支分别交于两点E、F(F点在上方,E点在下方),M、N分别为双曲线的左、右顶点,求满足条件S△MDF=4S△DNE的k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c且满足cosA=
3
5
AB
AC
=3.
(1)求△ABC中的面积;   
(2)若c=1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+x-6=0},B={x|mx=1},若B?A,求由实数m所构成的集合M.

查看答案和解析>>

同步练习册答案