精英家教网 > 高中数学 > 题目详情
15.已知条件p:A={x∈R|x2+ax+1=0},q:B={x∈R|x2-3x+2≤0},若p是q的充分条件,求实数a的取值范围.

分析 由p是q的充分不必要条件,条件p:A={x∈R|x2+ax+1=0},q:B={x∈R|x2-3x+2≤0}={x|1≤x≤2},得到p⇒q,q不能推出p,即A是B的真子集,由此能求出实数a的取值范围.

解答 解:∵q:B={x∈R|x2-3x+2≤0}={x|1≤x≤2},
∵p是q的充分不必要条件,
条件p:A={x∈R|x2+ax+1=0},q:B={x∈R|x2-3x+2≤0}={x|1≤x≤2},
∴p⇒q,q不能推出p,即A是B的真子集,
∵可知A=∅或方程x2+ax+1=0的两根在区间[1,2]内,
∴△=a2-4<0,或$\left\{\begin{array}{l}{△={a}^{2}-4≥0}\\{1≤-\frac{a}{2}≤2}\\{f(1)=1+a+1≥0}\\{f(2)=4+2a+1≥0}\end{array}\right.$,解之可得-2≤a<2.
故实数a的取值范围为:[-2,2).

点评 本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意一元二次方程的根的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{m}$=(sinA,$\frac{1}{2}$)与向量$\overrightarrow{n}$=(3,sinA+$\sqrt{3}$cosA)共线,其中A是△ABC的内角,则角A的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A(-1,0),B(2,0),平面内与点A距离为1,且与点B距离为2的直线的条数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=$\sqrt{6}$,CD=2AB=2$\sqrt{2}$,∠PAD=120°,E和F分别是棱CD和PC的中点.
(1)求证:CD⊥BF;
(2)求直线PD与平面PBC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{a}$=(sinωx,sin(ωx-$\frac{π}{4}$)),$\overrightarrow{b}$=(sinωx+2$\sqrt{3}$cosωx,sin(ωx+$\frac{π}{4}$)),函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$,函数g(x)=f(x)-$\frac{5}{2}$任意两个相邻零点间的距离为π,其中ω为常数,且ω>0.
(1)若x=x0(0≤x0≤$\frac{π}{2}$)是函数f(x)的一个零点,求sin2x0的值;
(2)当x∈[-$\frac{π}{12}$,$\frac{2π}{3}$]时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$lo{g}_{({a}^{2}-x)}$(2x+1)在(-$\frac{1}{2}$,0)内恒有f(x)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知sinα-cosα=$\frac{1}{5}$,且0<α<π,求下列各式的值:
(1)sinαcosα;(2)sinα+cosα;(3)sin3α+cos3α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列各组函数中表示同一个函数的是④
①f(x)=x2与g(x)=(x+1)2
②f(x)=(x一1)0与g(x)=1;
③f(x)=x-1与g(x)=$\sqrt{(x-1)^{2}}$;
④f(x)=|x|与g(t)=$\sqrt{{t}^{2}}$;
⑤f(x)=$\frac{(x-1)•\sqrt{x-2}}{x-1}$,g(x)=$\sqrt{x-2}$;
⑥f(x)=$\frac{{x}^{2}-1}{x-1}$与g(x)=x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数是奇函数的是(  )
A.f(x)=x4B.f(x)=x+$\frac{1}{x}$C.f(x)=x3-1D.f(x)=$\frac{1}{{x}^{2}}$

查看答案和解析>>

同步练习册答案