3£®ÒÑÖª½¹¾àΪ2$\sqrt{3}$µÄÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó½¹µãΪF1¡¢É϶¥µãΪD£¬Ö±ÏßDF1ÓëÍÖÔ²CµÄÁíÒ»½»µãΪH£¬ÇÒ|DF1|=7|F1H|£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©µãAÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬¹ýµãB£¨1£¬0£©ÇÒбÂÊΪk£¨k¡Ù0£©µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚE¡¢FÁ½µã£¬Ö±ÏßAE¡¢AF·Ö±ð½»Ö±Ïßx=3ÓÚM£¬NÁ½µã£¬Ïß¶ÎMNµÄÖеãΪP£¬¼ÇÖ±ÏßPBµÄбÂÊΪk¡ä£¬ÇóÖ¤£ºk•k¡äΪ¶¨Öµ£®

·ÖÎö £¨1£©ÓÉÒÑÖªµÃ${F}_{1}£¨-\sqrt{3}£¬0£©$£¬H£¨-$\frac{8\sqrt{3}}{7}$£¬-$\frac{b}{7}$£©£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨2£©ÓÉÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{{x}^{2}+4{y}^{2}-4=0}\end{array}\right.$£¬µÃ£¨4k2+1£©x2-8k2x+4k2-4=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢Ö±Ïß·½³Ì¡¢ÍÖÔ²ÐÔÖÊ£¬½áºÏÒÑÖªÌõ¼þÄÜÖ¤Ã÷k•k¡äΪ¶¨Öµ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²CµÄ½¹¾àΪ2$\sqrt{3}$£¬¡à${F}_{1}£¨-\sqrt{3}£¬0£©$£¬
¡ßD£¨0£¬b£©£¬Ö±ÏßDF1ÓëÍÖÔ²CµÄÁíÒ»½»µãΪH£¬ÇÒ|DF1|=7|F1H|£¬
¡àµãH£¨-$\frac{8\sqrt{3}}{7}$£¬-$\frac{b}{7}$£©£¬
Ôò$\frac{64¡Á3}{49{a}^{2}}$+$\frac{1}{49}=1$£¬½âµÃa2=4£¬Ôòb2=a2-3=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£®
Ö¤Ã÷£º£¨2£©ÓÉÌâÒâÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x-1£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{{x}^{2}+4{y}^{2}-4=0}\end{array}\right.$£¬µÃ£¨4k2+1£©x2-8k2x+4k2-4=0£¬
ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{8{k}^{2}}{4{k}^{2}+1}$£¬${x}_{1}{x}_{2}=\frac{4{k}^{2}-4}{4{k}^{2}+1}$£¬
Ö±ÏßAE£¬AFµÄ·½³Ì·Ö±ðΪy=$\frac{{y}_{1}}{{x}_{1}-2}£¨x-2£©$£¬$y=\frac{{y}_{2}}{{x}_{2}-2}$£¨x-2£©£¬
Áîx=3£¬ÔòM£¨3£¬$\frac{{y}_{1}}{{x}_{1}-2}$£©£¬N£¨3£¬$\frac{{y}_{2}}{{x}_{2}-2}$£©£¬
¡àP£¨3£¬$\frac{1}{2}£¨\frac{{y}_{1}}{{x}_{1}-2}+\frac{{y}_{2}}{{x}_{2}-2}£©$£©£¬
¡àk•k¡ä=$\frac{k}{4}¡Á$$\frac{k£¨{x}_{1}-1£©£¨{x}_{2}-2£©+k£¨{x}_{2}-1£©£¨{x}_{1}-2£©}{£¨{x}_{1}-2£©£¨{x}_{2}-2£©}$
=$\frac{{k}^{2}}{4}$¡Á$\frac{2{x}_{1}{x}_{2}-3£¨{x}_{1}+{x}_{2}£©+4}{{x}_{1}{x}_{2}-2£¨{x}_{1}+{x}_{2}£©+4}$
=$\frac{{k}^{2}}{4}$¡Á$\frac{\frac{8{k}^{2}-8-24{k}^{2}+16{k}^{2}+4}{4{k}^{2}+1}}{\frac{4{k}^{2}-4-16{k}^{2}+16{k}^{2}+4}{4{k}^{2}+1}}$
=$\frac{{k}^{2}}{4}¡Á\frac{£¨-4£©}{4{k}^{2}}$
=-$\frac{1}{4}$£®
¡àk•k¡äΪ¶¨Öµ-$\frac{1}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ö±ÏßµÄбÂʵij˻ýΪ¶¨ÖµµÄÖ¤Ã÷£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÖ±Ïß·½³Ì¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ãa1=1£¬an+1=2Sn+n2-n+1£¨n¡Ý1£©£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an+n-$\frac{1}{2}$}ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÔÚÒ»×éÑù±¾Êý¾Ý£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡­£¬£¨x6£¬y6£©µÄÉ¢µãͼÖУ¬ÈôËùÓÐÑù±¾µã£¨xi£¬yi£©£¨i=1£¬2£¬¡­£¬6£©¶¼ÔÚÇúÏßy=bx2-$\frac{1}{3}$¸½½ü²¨¶¯£®¾­¼ÆËã$\sum_{i=1}^{6}$xi=11£¬$\sum_{i=1}^{6}$yi=13£¬$\sum_{i=1}^{6}$xi2=21£¬ÔòʵÊýbµÄֵΪ$\frac{5}{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®´Ó8¸öÈËÖÐÑ¡³ö4È˲μÓÊýѧÐËȤС×飬µ«¼×¡¢ÒÒ¡¢±ûÈýÈËÖÐÖÁÉÙÓÐÒ»ÈËÒ»¶¨Òª²Î¼Ó£¬Ôò¹²ÓжàÉÙÖÖÑ¡·¨£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÕýÃæÌåABCDµÄÌå»ýΪV£¬PÊÇÕýËÄÃæÌåABCDµÄÄÚ²¿µÄµã£®
¢ÙÉè¡°VP-ABC¡Ý$\frac{1}{4}$V¡±µÄʼþΪX£¬Ôò¸ÅÂÊP£¨X£©=$\frac{27}{64}$£»
¢ÚÉè¡°VP-ABC¡Ý$\frac{1}{4}$VÇÒVP-BCD¡Ý$\frac{1}{4}$V¡±µÄʼþΪY£¬Ôò¸ÅÂÊP£¨Y£©=$\frac{1}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªµãPÊÇÍÖÔ²$\frac{y^2}{8}+\frac{x^2}{4}=1$Éϵĵ㣬F1£¬F2ÊÇËüµÄÁ½¸ö½¹µã£¬ÇÒ¡ÏF1PF2=60¡ã£¬Ôò¡÷F1PF2µÄÃæ»ýΪ$\frac{4\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÁ½¸ö½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬ÇÒ¹ýµã£¨2£¬$\sqrt{2}$£©£®ÓÖM£¬N£¬P£¬QÊÇÍÖÔ²CÉϵÄËĸö²»Í¬µÄµã£¬Á½Ìõ¶¼²»ºÍxÖá´¹Ö±µÄÖ±ÏßMNºÍPQ·Ö±ð¹ýµãF1£¬F2£¬ÇÒÕâÁ½ÌõÖ±Ïß»¥Ïà´¹Ö±£¬Ôò$\frac{1}{{|{MN}|}}+\frac{1}{{|{PQ}|}}$Ϊ¶¨Öµ£¨¡¡¡¡£©
A£®$\frac{{3\sqrt{2}}}{8}$B£®$\frac{{5\sqrt{2}}}{8}$C£®$\frac{{7\sqrt{2}}}{8}$D£®$\frac{{\sqrt{2}}}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÍÖÔ²CÓëÍÖÔ²E£º$\frac{x^2}{7}+\frac{y^2}{5}=1$¹²½¹µã£¬²¢ÇÒ¾­¹ýµã$A£¨1£¬\frac{{\sqrt{6}}}{2}£©$£¬
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÔÚÍÖÔ²CÉÏÈÎÈ¡Á½µãP¡¢Q£¬ÉèPQËùÔÚÖ±ÏßÓëxÖá½»ÓÚµãM£¨m£¬0£©£¬µãP1ΪµãP¹ØÓÚÖáxµÄ¶Ô³Æµã£¬QP1ËùÔÚÖ±ÏßÓëxÖá½»ÓÚµãN£¨n£¬0£©£¬Ì½ÇómnÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö¸Ã¶¨Öµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚÈçͼËùʾµÄ¼¸ºÎÌåEFABCÖУ¬ÒÑÖª¡÷ABCÊǵÈÑüÈý½ÇÐΣ¬AB=AC£¬AF¡ÍÆ½ÃæABC£¬DΪBCµÄÖе㣬DE¡ÎAFÇÒBC=AF=2DE=2£®
£¨1£©ÇóÖ¤£ºAB¡ÎÆ½ÃæEFC£»
£¨2£©Èô¡ÏBAC=120¡ã£¬Çó¶þÃæ½ÇB-EF-CµÄÆ½Ãæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸