精英家教网 > 高中数学 > 题目详情
4.设集合U={0,1,2,3,4,5},A={1,2},B={x∈Z|x2-5x+4<0},则(∁UA)∩(∁UB)=(  )
A.{0,1,2,3}B.{5}C.{1,2,4}D.{0,4,5}

分析 化简集合B,根据补集与交集的定义进行计算即可.

解答 解:全集U={0,1,2,3,4,5},集合A={1,2},
B={x|x2-5x+4<0,x∈U}={x|1<x<4,x∈U}={2,3},
∴∁UA={0,3,4,5},
UB={0,1,4,5},
∴集合(∁UA)∩(∁UB)={0,4,5}.
故选:D.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)={log_2}|x+\frac{1}{2}|$和g(x)=3sinxπ,若$x∈(-\frac{7}{2},-\frac{1}{2})∪(-\frac{1}{2},\frac{5}{2})$,则两函数图象交点的横坐标之和等于-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,抛物线C的顶点是双曲线D:$\frac{y^2}{2}-{x^2}=\frac{1}{3}$的中心,抛物线C的焦点与双曲线D的焦点相同.
(1)求抛物线C的方程;
(2)若点P(t,1)(t>0)为抛物线C上的定点,A,B为抛物线C上两个动点.且PA⊥PB,问直线AB是否经过定点?若是,求出该定点,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是(  )
A.$9+4({\sqrt{2}+\sqrt{5}})c{m^2}$B.$10+2({\sqrt{2}+\sqrt{3}})c{m^2}$C.$11+2({\sqrt{2}+\sqrt{5}})c{m^2}$D.$11+2({\sqrt{2}+\sqrt{3}})c{m^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.(1)已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2. 若$\overrightarrow{a}$•$\overrightarrow{b}$=-3,则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的大小为$\frac{2π}{3}$.
(2)已知$\overrightarrow{a}$=(m-2,-3),$\overrightarrow{b}$=(-1,m),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则m=3或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=sinx+cosx,x∈[0,$\frac{π}{4}$],则y=f(x)值域为(  )
A.[-$\sqrt{2}$,$\sqrt{2}$]B.[1,$\sqrt{2}$]C.[-1,$\sqrt{2}$]D.[0,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图是某产品加工为成品的流程图,从图中可以看出,若是一件废品,则必须至少经过的工序数目为(  )
A.6道B.5道C.4道D.3道

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{{2\sqrt{5}}}{5}t\\ y=1+\frac{{\sqrt{5}}}{5}t\end{array}\right.$(t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=sinα\end{array}\right.$(α为参数),曲线C1上点P的极角为$\frac{π}{4}$,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果某四棱锥的三视图如图所示,那么该四棱锥的四个侧面中是直角三角形的有(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案