精英家教网 > 高中数学 > 题目详情
(14分)设函数,其中
⑴当时,判断函数在定义域上的单调性;
⑵求函数的极值点;
⑶证明对任意的正整数,不等式成立。
⑴当时函数在定义域上单调递增
时,有唯一极小值点
时,有一个极大值点和一个极小值点时,无极值点。
⑶证明见解析
本试题主要是考查了导数在研究函数中的运用,求解函数的单调性和函数的极值,以及函数与不等式的综合运用。
(1)先求解函数的定义域,然后求解导数,令导数大于零或者小于零得到单调区间。
(2)由⑴得当时函数无极值点,接下来对于参数b,进行分类讨论,看导数为零的解,进而确定极值的问题。
(3)当时,函数,令函数
,当时,
函数上单调递增,又,时,恒有
恒成立,从而得到证明。
解:⑴由题意知的定义域为(1分),
,其图象的对称轴为
时,,即上恒成立,时,
时函数在定义域上单调递增。………………………(3分)
⑵①由⑴得当时函数无极值点………………………(4分)
时,有两个相同的解
时,时,
函数上无极值点………………………(5分)
③当时,有两个不同解,
,即
时,的变化情况如下表:

由此表可知时,有唯一极小值点;………………(7分)
时,,此时,的变化情况如下表:

由此表可知:时,有一个极大值点和一个极小值点;……………(9分)
综上所述:时,有唯一极小值点时,有一个极大值点和一个极小值点时,无极值点。(10分)
⑶当时,函数,令函数
,当时,
函数上单调递增,又,时,恒有
恒成立…………………………(12分)
故当时,有…………………………(13分)
对任意正整数,取,则有,故结论成立。……(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知是函数的一个极值点。
(1)求;         (2)求函数的单调区间;
(3)若直线与函数的图象有3个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a为实数, 函数f(x)=x3-x2-x+a.
(1)求f(x)的极值;
(2)若曲线y=f(x)与x轴仅有一个交点, 求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于三次函数,定义的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数都关于点对称:
②存在三次函数有实数解,点为函数的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数,则,
其中正确命题的序号为__          _____(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 已知R,函数(x∈R).
(1)当时,求函数f(x)的单调递增区间;
(2)函数f(x)是否能在R上单调递减,若能,求出的取值范围;若不能,请说明理由;
(3)若函数f(x)在上单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题9分)
求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是 (  )
A.①、②B.①、③C.③、④D.①、④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.
(Ⅰ)判断函数的单调性并证明;
(Ⅱ)求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调减区间是  (      )
A.B.C.D.

查看答案和解析>>

同步练习册答案