精英家教网 > 高中数学 > 题目详情
已知a>0,b>0,且a2+b2=
9
2
,若a+b≤m恒成立,
(Ⅰ)求m的最小值;
(Ⅱ)若2|x-1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.
考点:绝对值不等式
专题:不等式的解法及应用
分析:(Ⅰ)变形已知表达式,利用柯西不等式,求出a+b的最大值,即可求m的最小值;
(Ⅱ)通过2|x-1|+|x|≥a+b对任意的a,b恒成立,结合(Ⅰ)的结果,利用x的范围分类讨论,求出实数x的取值范围.
解答: 解:(Ⅰ)∵a>0,b>0,且a2+b2=
9
2

∴9=(a2+b2)(12+12)≥(a+b)2
∴a+b≤3,(当且仅当
a
1
=
b
1
,即
a=
3
2
b=
3
2
时取等号)
又∵a+b≤m恒成立,∴m≥3.
故m的最小值为3.…(4分)
(II)要使2|x-1|+|x|≥a+b恒成立,须且只须2|x-1|+|x|≥3.
x≤0
-2x+2-x≥3
0<x≤1
-2x+2+x≥3
x>1
2x-2+x≥3

x≤-
1
3
x≥
5
3
.…(7分)
点评:本题考查绝对值不等式的解法,函数恒成立的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法正确的个数是(  )
①空集是任何集合的真子集;②函数f(x)=3x+1是指数函数;③既是奇函数又是偶函数的函数有无数多个;④若A∪B=B,则A∩B=A.
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+
3
cosxsinx-
1
2
,x∈R
(1)求函数f(x)的最小正周期
(2)在△ABC中,角A,B,C的对边分别为a,b,c,且满足2bcosA=2c-
3
a,求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某高中毕业学年,在高校自主招生期间,把学生的平时成绩按“百分制”折算,排出前n名学生,并对这n名学生按成绩分组,第一组[75,80),第二组[80,85),第三组[85,90),第四组[90,95),第五组[95,100],如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列,且第四组的人数为60.
(Ⅰ)请在图中补全频率分布直方图;
(Ⅱ)若Q大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试.
①若Q大学本次面试中有B、C、D三位考官,规定获得两位考官的认可即面试成功,且面试结果相互独立,已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为
1
2
1
3
1
5
,求甲同学面试成功的概率;
②若Q大学决定在这6名学生中随机抽取3名学生接受考官B的面试,第3组中有ξ名学生被考官B面试,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥DC,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BC⊥平面PBD:
(Ⅱ)求直线AP与平面PDB所成角的正弦值;
(Ⅲ)设E为侧棱PC上异于端点的一点,
PE
PC
,试确定λ的值,使得二面角E-BD-P的余弦值为
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是△ABC的三个内角,且满足sin2A-sin2B+sin2C=
2
sinAsinC

(Ⅰ)求角B;
(Ⅱ)若sinA=
3
5
,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直三棱柱(侧面垂直于底面的三棱柱)ABC-A1B1C1中,以AB、BC为邻边作平行四边形ABCD,AB⊥BC,AB=BC=AA1记线段CD、A1B1的中心分别是P、E连接AE、BP,得到如图所示的几何体
(1)若AA1=a,图甲给出了异面直线之间的距离的一种算法框图(其中异面直线的公垂线是指两异面直线都垂直且相交的直线)请利用这种方法求异面直线AE和BP之间的距离;
(2)若AA1=2,在线段A1P上是否存在一点F,使得平面AFB⊥平面A1BP?若存在,指出点F的位置,并证明你的结论;若不存在,请说明理由;
(3)若AA1=a,在线段A1C上有一M,过点M做垂直于平面A1ACC1的直线l,与直三棱柱ABC-A1B1C1的其他侧面相交于N,过CM=x,MN=y,求函数y=f(x)的解析式,并据此求出线段MN的长度最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)16的四次方根是±2;
(2)集合A={x|y=
x
},B={y|y=2 x2-1,x∈R}则A∩B=B;
(3)若|log3a|=|log3b|,且a≠b,a>0,b>0则ab=1;
(4)若函数f(x+1)是偶函数,则f(x)的图象关于直线x=1对称;
其中正确的序号是
 
$\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①3≥3
x+
1
x
≥2 (x∈R )

③“若x>3,则x2>9”的否命题
④“若a≤1,则方程ax2+2x+1=0至少有一个负根”的逆否命题.
则其中正确的命题序号是
 

查看答案和解析>>

同步练习册答案