精英家教网 > 高中数学 > 题目详情
已知正方形ABCD的四个顶点在椭圆上,AB∥轴,AD过左焦点F,则该椭圆的离心率为         
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)椭圆E的中心在原点O,焦点在x轴上,离心率,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:(λ≥2)。
(1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积;
(2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程;
(3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知是椭圆上的三点,其中点的坐标为过椭圆的中心,且
(1)求椭圆的方程;
(2)过点的直线(斜率存在时)与椭圆交于两点,设为椭圆轴负半轴的交点,且.求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,F1、F2分别是椭圆的左右焦点,M为椭圆上一点,MF2垂直于轴,椭圆下顶点和右顶点分别为A,B,且
(1)求椭圆的离心率;
(2)过F2作OM垂直的直线交椭圆于点P,Q,若,求椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点P(0,2)且互相垂直的两条直线,交E于A,B两点,交E交C,D两点,AB,CD的中点分别为M,N。
(1)求椭圆E的方程;
(2)求k的取值范围;
(3)求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在原点,长轴在轴上,离心率为,且上一点到的两焦点的距离之和为,则椭圆的方程为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的两焦点为,点满足,则||+||的取值范围为_______,直线与椭圆C的公共点个数_____。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆(>0)的两个焦点F1,F2,点在椭圆上,则的面积最大值一定是(   )
             B           C         D  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中,.若以为焦点的椭圆经过点,则该椭圆的离心率为(    )
A.B.C.D.2

查看答案和解析>>

同步练习册答案