精英家教网 > 高中数学 > 题目详情
1.对抛物线y=$\frac{1}{4}$x2,下列描述正确的是(  )
A.开口向上,焦点为(0,1)B.开口向右,焦点为(1,0)
C.开口向上,焦点为(0,$\frac{1}{16}$)D.开口向右,焦点为($\frac{1}{16}$,0)

分析 将抛物线方程化为标准方程,再由抛物线的性质,即可得到开口方向和焦点坐标.

解答 解:抛物线y=$\frac{1}{4}$x2,即为抛物线x2=4y,
由抛物线的性质可得该抛物线开口向上,
焦点为(0,1).
故选A.

点评 本题考查抛物线的方程和性质,主要考查抛物线的焦点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),以该椭圆上的异于长轴端点的点和椭圆的左,右焦点F1,F2为顶点的三角形的周长为8$\sqrt{2}$,以椭圆的四个顶点组成的菱形的面积为8$\sqrt{2}$,双曲线G:x2-y2=m(m>0)的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A,B和C,D.
(1)求椭圆和双曲线的标准方程;(2)设直线PF1,PF2的斜率分别为k1,k2,探求k1与k2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB||CD|恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在斜三棱柱 A BC-A1 B1C1中,侧面 ACC1 A1与侧面C B B1C1都是菱形,∠ACC1=∠CC1 B1=60°,AC=2,AB1=$\sqrt{6}$.
(Ⅰ)求证:平面ACC1A1⊥平面BCC1B1
(Ⅱ)求二面角C-A B1-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$\int_0^1{({e^x}+2x)dx=}$(  )
A.1B.e-1C.eD.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x(m∈R),令F(x)=f(x)+g(x).
(1)当m=$\frac{1}{2}$时,求函数f(x)的单调递增区间;
(2)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C的圆心在坐标原点,且被直线3x+4y+15=0截得的弦长为8
(Ⅰ)试求圆C的方程;
(Ⅱ)当P在圆C上运动时,点D是P在x轴上的投影,M为线段PD上一点,且|MD|=$\frac{4}{5}$|PD|.求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线l:3x+4y-3=0和圆C:x2+y2-6x-2y+1=0,则圆C上到直线l的距离等于1的点的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$\frac{i}{1+2i}$(i是虚数单位)的虚部是(  )
A.$\frac{2}{5}$B.-$\frac{2}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}的首项为a1=1,数列{bn}为等比数列且${b}_{n}=\frac{{a}_{n+1}}{{a}_{n}}$,若${b}_{10}{b}_{11}=\root{5}{2}$则a21=4.

查看答案和解析>>

同步练习册答案