精英家教网 > 高中数学 > 题目详情
1.已知f(x)=$\left\{\begin{array}{l}{x+1(x>0)}\\{π(x=0)}\\{{x}^{2}(x<0)}\end{array}\right.$,
(1)求f(1),f(-2),f(f(-3))
(2)如果f(x0)=3,求x0

分析 (1)利用分段函数的解析式,逐一求解即可.
(2)利用分段函数,列出方程求解即可.

解答 解:(1)f(x)=$\left\{\begin{array}{l}{x+1(x>0)}\\{π(x=0)}\\{{x}^{2}(x<0)}\end{array}\right.$,
f(1)=1+1=2;
f(-2)=(-2)2=4;
f(f(-3))=f[(-3)2]=f(9)=9+1=10;
(2)f(x0)=3,当x0>0时,x0+1=3,得x0=2,
当x0<0时,x02=3,解得x0=-$\sqrt{3}$.

点评 本题考查分段函数的应用,函数值的求法,函数的零点与方程根的关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=k(x-1)-2lnx(k>0).
(1)若函数f(x)有且只有一个零点,求实数k的值;
(2)设函数g(x)=xe1-x(其中e为自然对数的底数),若对任意给定的s∈(0,e),均存在两个不同的ti∈(${\frac{1}{e^2},e}$)(i=1,2),使得f(ti)=g(s)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\frac{a}{x}-1+lnx$,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围是(  )
A.(2,+∞)B.(-∞,3)C.(-∞,1]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.老师有同样的作文练习2本,同样的英语练习3本,从中取出4本送给4位学生,每位学生1本,则不同的送法共有(  )
A.4种B.10种C.18种D.20种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)的图象关于y轴对称,且对任意x∈R都有f(x+3)=-f(x),若当x∈($\frac{3}{2}$,$\frac{5}{2}$)时,f(x)=($\frac{1}{2}$)x,则f(2017)=(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)求不等式的解集:-x2+4x+5<0.
(2)解不等式|x-8|-|x-4|>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中x为销售量(单位:辆).若该公司在两地共销售15辆车,则能获得的最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$a<\frac{1}{6}$,则化简$\root{4}{{{{(6a-1)}^2}}}$的结果是(  )
A.$-\sqrt{1-6a}$B.$\sqrt{6a-1}$C.$\sqrt{1-6a}$D.$-\sqrt{6a-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.2015年我校组织学生积极参加科技创新大赛,其中作品A获得省级奖,九位评委为作品A给出的分数如茎叶图所示,记分员算得的平均分为89,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员的计算无误,则数字x应该是(  )
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案