精英家教网 > 高中数学 > 题目详情
2.将A,B,C,D,E这5名同学从左至右排成一排,则A与B相邻且A与C之间恰好有一名同学的排法有(  )
A.18B.20C.21D.22

分析 解:根据题意,分2种情况讨论:①、若A与C之间为B,即B在A、C中间且三人相邻,②、若A与C之间不是B,分别求出每种情况的排法数目,由分类计数原理计算可得答案.

解答 解:根据题意,分2种情况讨论:
①、若A与C之间为B,即B在A、C中间且三人相邻,
考虑A、C的顺序,有A22种情况,将三人看成一个整体,
与D、E2人全排列,有A33=6种情况,
则此时有2×6=12种排法;
②、若A与C之间不是B,
先D、E中选取1人,安排A、C之间,有C21=2种选法,
此时B在A的另一侧,将4人看成一共整体,考虑之间的顺序,有A22=2种情况,
将这个整体与剩余的1人全排列,有A22=2种情况,
则此时有2×2×2=8种排法;
则一共有12+8=20种符合题意的排法;
故选:B.

点评 本题考查排列、组合的综合应用,涉及分类计数原理的应用,注意“A与B相邻且A与C之间恰好有一名同学”这一条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知倾斜角为$\frac{π}{6}$的直线l过抛物线C:y2=2px(p>0)的焦点F,抛物线C上存在点P与x轴上一点Q(5,0)关于直线l对称,则P=(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知P是抛物线y2=4x上的动点,Q在圆C:(x+3)2+(y-3)2=1上,R是P在y轴上的射影,则|PQ|+|PR|的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在直三棱柱ABC-A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则三棱锥A1-MBC1的体积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中真命题的个数是(  )
①若p∧q是假命题,则p,q都是假命题;
②命题“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x03-x02+1>0”;
③若p:x≤1,q:$\frac{1}{x}$<1,则¬p是q的充分不必要条件.
④设随机变量X服从正态分布N(3,7),若P(X>C+1)=P(X<C-1),则C=3.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.通过对某城市一天内单次租用共享自行车的时间50分钟到100钟的n人进行统计,按照租车时间[50,50),[60,70),[70,80),[80,90),[90,100)分组做出频率分布直方图如图1,并作出租用时间和茎叶图如图2(图中仅列出了时间在[50,60),[90,100)的数据).

(1)求n的频率分布直方图中的x,y
(2)从租用时间在80分钟以上(含80分钟)的人数中随机抽取4人,设随机变量X表示所抽取的4人租用时间在[80,90)内的人数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+2|+|x-3|
(1)证明:f(x)≥f(0);
(2)若?x∈R,不等式3f(x)>f(a+1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.80元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照[0,2],(2,4],…,(14,16]分成8组,制成了如图1所示的频率分布直方图.

(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.
( i)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水用量都超过12吨的概率;
(ⅱ)试估计全市居民用水价格的期望(精确到0.01);
(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费y(元)与月份x的散点图,其拟合的线性回归方程是$\widehaty=2x+33$.若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(x-3)ex+ax,a∈R.
(Ⅰ)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a∈[0,e)时,设函数f(x)在(1,+∞)上的最小值为g(a),求函数g(a)的值域.

查看答案和解析>>

同步练习册答案