精英家教网 > 高中数学 > 题目详情
3.已知各项均为正数的数列{an}的前n项和为Sn,且4Sn=an2+2an(n∈N*).
(1)求a1的值及数列{an}的通项公式;
(2)记数列{$\frac{n+3}{{{a}_{n}}^{3}•{2}^{n}}$}的前n项和为Tn,求证:Tn<$\frac{9}{32}$(n∈N*).

分析 (1)通过4Sn=an2+2an,令n=1可得首项,当n≥2时,利用4an=an2+2an-(an-12+2an-1)可得公差,进而可得结论;
(Ⅱ)通过令n=1可得T1<$\frac{9}{32}$满足结论,当n≥2时,利用放缩法可得$\frac{n+3}{{{a}_{n}}^{3}•{2}^{n}}$<$\frac{1}{8}$[$\frac{1}{(n-1)n}$•$\frac{1}{{2}^{n-1}}$-$\frac{1}{n(n+1)}$•$\frac{1}{{2}^{n}}$],并项相加即得.

解答 (1)解:当n=1时,4a1=4S1=${{a}_{1}}^{2}$+2a1
解得a1=2或a1=0(舍去);
当n≥2时,4Sn=an2+2an,4Sn-1=an-12+2an-1
相减得4an=an2+2an-(an-12+2an-1),即an2-an-12=2(an+an-1),
又an>0,∴an+an-1≠0,则an-an-1=2,
∴数列{an}是首项为2,公差为2的等差数列,
∴an=2n;
(Ⅱ)证明:当n=1时,T1=$\frac{n+3}{{{a}_{n}}^{3}•{2}^{n}}$=$\frac{1}{4}$=$\frac{8}{32}$<$\frac{9}{32}$;
当n≥2时,$\frac{n+3}{{{a}_{n}}^{3}•{2}^{n}}$=$\frac{n+3}{8{n}^{3}•{2}^{n}}$=$\frac{n+3}{8n•{n}^{2}•{2}^{n}}$
<$\frac{n+3}{8n({n}^{2}-1)•{2}^{n}}$=$\frac{n+3}{8(n-1)n(n+1)•{2}^{n}}$=$\frac{1}{8}$•$\frac{n+1+2}{(n-1)n(n+1)•{2}^{n}}$
=$\frac{1}{8}${$\frac{1}{(n-1)n•{2}^{n}}$+[$\frac{1}{(n-1)n}$-$\frac{1}{n(n+1)}$]$\frac{1}{{2}^{n}}$}
=$\frac{1}{8}$[$\frac{1}{(n-1)n}$•$\frac{1}{{2}^{n-1}}$-$\frac{1}{n(n+1)}$•$\frac{1}{{2}^{n}}$],
∴Tn<$\frac{1}{4}$+$\frac{1}{8}$[$\frac{1}{1×2×{2}^{1}}$-$\frac{1}{2×3×{2}^{2}}$+$\frac{1}{2×3×{2}^{2}}$-$\frac{1}{3×4×{2}^{3}}$+…+$\frac{1}{(n-1)n}$•$\frac{1}{{2}^{n-1}}$-$\frac{1}{n(n+1)}$•$\frac{1}{{2}^{n}}$]
=$\frac{1}{4}$+$\frac{1}{8}$($\frac{1}{1×2×{2}^{1}}$-$\frac{1}{n(n+1)}$•$\frac{1}{{2}^{n}}$)
<$\frac{1}{4}$+$\frac{1}{8}$•$\frac{1}{1×2×{2}^{1}}$
=$\frac{1}{4}$+$\frac{1}{32}$=$\frac{9}{32}$;
综上,对任意n∈N*,均有Tn<$\frac{9}{32}$成立.

点评 本题考查求数列的通项、判断数列和的取值范围,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},}&{0<x≤3}\\{-\frac{2}{3}x+\frac{16}{3},}&{x>3}\end{array}\right.$,若函数g(x)=f(x)-m有三个互不相等的零点a、b、c,则abc的取值范围为(  )
A.(2,$\frac{10}{3}$)B.(0,5)C.(6,10)D.(3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=lnx+ax2+bx(a,b∈R),其图象在点(1,f(1))处的切线平行于x轴.
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)试讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x∈N|x-3≤0},B=f{x∈Z|x2+x-2≤0},则集合A∩B=(  )
A.{1}B.{0,1}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC中,∠A,∠B,∠C的对边分别为a,b,c,若a=1,2cosC+c=2b,则△ABC的周长的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图一个倒三角形数表:
它的排列规则是:第i(i=2,…,101)行的第j(j=1,2,…,102-i)个数ai.j=$\frac{{a}_{i-1,j}+{a}_{i-1,j+1}}{2}$,现设a1.j=xj-1(j=1,2,…,101),其中x>0,若a101.1=$\frac{1}{{2}^{50}}$,则x=(  )
A.$\sqrt{2}$-1B.1-$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在各项均为正数的等比数列{an}中,已知a1a5=25,则a3等于(  )
A.5B.25C.-25D.-5或5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“a≥3”是“?x∈[1,2],使得x2-a≤0”的(  )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知二次函数y=ax2+bx-3的图象过坐标(-2,5),与x轴的两个交点分别为A,B(3,0).与y轴的负半轴交于点C.
(1)求二次函数的表达式;
(2)在该函数图象上能否找到一点P,使∠POC=∠PCO?若能,请求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

同步练习册答案