精英家教网 > 高中数学 > 题目详情

函数y=lnx+ax有两个零点,则a的取值范围是________.

 

(-,0)

【解析】因为函数y=lnx+ax,所以y′=+a,若函数存在两个零点,则必须a<0,令y′=+a=0得x0=-.当0<x<-时,y′>0,函数单调递增;当x>-时,y′<0,函数单调递减,因为函数y=lnx+ax有两个零点,故ln-1>0,得-<a<0.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:填空题

已知函数f(x)=,则不等式f(a2-4)>f(3a)的解集为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-1函数的概念、定义域和值域(解析版) 题型:填空题

对a,b∈R,记min{a,b}=,函数f(x)=min{x,-|x-1|+2}(x∈R)的最大值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-12导数的应用二(解析版) 题型:解答题

已知函数f(x)=(ax+1)ex.

(1)求函数f(x)的单调区间;

(2)当a>0时,求函数f(x)在区间[-2,0]上的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-12导数的应用二(解析版) 题型:选择题

函数f(x)=ex(sinx+cosx)在区间[0,]上的值域为(  )

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:填空题

函数f(x)=x(x-m)2在x=1处取得极小值,则m=________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:选择题

若a>0,b>0,且函数f(x)=4x3-ax2-2bx-2在x=1处有极值,则ab的最大值为(  )

A.2 B.3 C.6 D.9

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:选择题

若曲线f(x)=,g(x)=xα在点P(1,1)处的切线分别为l1,l2,且l1⊥l2,则实数α的值为(  )

A.-2 B.2 C. D.-

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-6几何概型(解析版) 题型:选择题

若从区间(0,2)内随机取两个数,则这两个数的比不小于4的概率为(  )

A. B. C. D.

 

查看答案和解析>>

同步练习册答案