精英家教网 > 高中数学 > 题目详情
(本题满分14分)
已知动圆过定点,且与定直线相切.
(1)求动圆圆心的轨迹的方程;
(2)若是轨迹的动弦,且, 分别以为切点作轨迹的切线,设两切线交点为,证明:.
解:(1)依题意,圆心的轨迹是以为焦点,为准线的抛物线上……3分
因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是………………6分
(2) ………………8分
,     ………11分
抛物线方程为所以过抛物线上A、B两点的切线斜率分别是
 。                                   ………12分
                           ………13分
所以,                                           ………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径忽略不计)从点A沿直线出发,经椭圆壁反射后第一次回到点A时,小球经过的路程是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
在平面直角坐标系xoy中,给定三点,点P到直线BC的距离是该点到直线AB,AC距离的等比中项。
(Ⅰ)求点P的轨迹方程;
(Ⅱ)若直线L经过的内心(设为D),且与P点的轨迹恰好有3个公共点,求L的斜率k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知点,直线为平面上的动点,过点作直线的垂线,垂足为点,且.
(1)求动点的轨迹的方程;          
(2)轨迹上是否存在一点使得过的切线与直线平行?若存在,求出的方程,并求出它与的距离;若不存在,请说明理由.      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

:已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点M,直线F1M与抛物线C相切。
(Ⅰ)求抛物线C的方程和点M的坐标;
(Ⅱ)过F2作抛物线C的两条互相垂直的弦AB、DE,设弦AB、DE的中点分别为F、N,求证直线FN恒过定点;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.设分别是椭圆的左、右焦点.若点在椭圆上,且,则                                                            
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二面角的平面角为为垂足,PA =5,PB=4,点A、B到棱l的距离分别为x,y当θ变化时,点(x,y)的轨迹是下列图形中的

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

不论取何值,方程所表示的曲线一定不是(   )
A 抛物线       B 双曲线      C 圆      D 直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为抛物线的焦点,为此抛物线上的点,且使的值最小,则点的坐标为    ******             .

查看答案和解析>>

同步练习册答案