精英家教网 > 高中数学 > 题目详情
不论取何值,方程所表示的曲线一定不是(   )
A 抛物线       B 双曲线      C 圆      D 直线
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=4x的焦点是F,准线是l,点M(1,2)是抛物线上一点,则经过点FM且与l相切的圆一共有
A.0个B.1个C.2个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆()过点,其左、右焦点分别为,且

(1)求椭圆的方程;
(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.圆锥曲线上任意两点连成的线段称为弦。若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦。已知点是圆锥曲线C上不与顶点重合的任意两点,是垂直于轴的一条垂轴弦,直线分别交轴于点和点

(1)试用的代数式分别表示
(2)若C的方程为(如图),求证:是与和点位置无关的定值;
(3)请选定一条除椭圆外的圆锥曲线C,试探究经过某种四则运算(加、减、乘、除),其结果是否是与和点位置无关的定值,写出你的研究结论并证明。
(说明:对于第3题,将根据研究结论所体现的思维层次,给予两种不同层次的评分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知动圆过定点,且与定直线相切.
(1)求动圆圆心的轨迹的方程;
(2)若是轨迹的动弦,且, 分别以为切点作轨迹的切线,设两切线交点为,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,设是椭圆的左焦点,直线为对应的准线,直线轴交于点,为椭圆的长轴,已知,且
(1)求椭圆的标准方程;
(2)求证:对于任意的割线,恒有
(3)求三角形△ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆C的长轴长与短轴长之比为,焦点坐标分别为F1(-2,0),F2(2,0),O是坐标原点.
(1)求椭圆C的标准方程;
(2)已知A(-3,0),B(3,0)P是椭圆C上异于A、B的任意一点,直线AP、BP分别交于y轴于M、N两点,求的值;
(3)在(2)的条件下,若G(s,o)、H(k,o)且,(s<k),分别以线段OG、OH为边作两个正方形,求这两上正方形的面积和的最小值,并求出取得最小值时G、H两点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆和双曲线的公共点为是两曲线的一个交点, 那么的值是___________

查看答案和解析>>

同步练习册答案