精英家教网 > 高中数学 > 题目详情
已知椭圆()过点,其左、右焦点分别为,且

(1)求椭圆的方程;
(2)若是直线上的两个动点,且,则以为直径的圆是否过定点?请说明理由.
解:(1)设点的坐标分别为

,可得,   …………………2分
所以,…………………4分

所以椭圆的方程为.        ……………………………6分
(2)设的坐标分别为,则
,可得,即, …………………8分
又圆的圆心为半径为
故圆的方程为,    

也就是,                ……………………11分
,可得或2,
故圆必过定点.             ……………………13分
(另法:(1)中也可以直接将点坐标代入椭圆方程来进行求解;(2)中可利用圆C直径的两端点直接写出圆的方程)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 若椭圆C的一个焦点为,其短轴上的一个端点到距离为
(Ⅰ)求椭圆及其“伴随圆”的方程;
(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;
(Ⅲ)过椭圆C“伴椭圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是实数,是抛物线的焦点,直线
(1)若,且在直线上,求抛物线的方程;
(2)当时,设直线与抛物线交于两点,过
分别作抛物线的准线的垂线,垂足为,连
轴于点,连结轴于点
①证明:
②若交于点,记△、四边形
、△的面积分别为,问
是否存在实数,使成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为,P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.
(Ⅰ)求M点的轨迹T的方程;
(Ⅱ)已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知点,直线为平面上的动点,过点作直线的垂线,垂足为点,且.
(1)求动点的轨迹的方程;          
(2)轨迹上是否存在一点使得过的切线与直线平行?若存在,求出的方程,并求出它与的距离;若不存在,请说明理由.      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.设分别是椭圆的左、右焦点.若点在椭圆上,且,则                                                            
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二面角的平面角为为垂足,PA =5,PB=4,点A、B到棱l的距离分别为x,y当θ变化时,点(x,y)的轨迹是下列图形中的

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

不论取何值,方程所表示的曲线一定不是(   )
A 抛物线       B 双曲线      C 圆      D 直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点M与两个定点O(0,0),A(3,0)的距离的比为,则点M的轨迹方程为     

查看答案和解析>>

同步练习册答案