精英家教网 > 高中数学 > 题目详情
9.sin220°+cos80°cos40°=$\frac{1}{4}$.

分析 直接利用和差化积公式化简,

解答 解:sin220°+cos80°cos40°
=sin220°+$\frac{1}{2}$(cos120°+cos40°)
=sin220°+$\frac{1}{2}$cos40°-$\frac{1}{4}$
=sin220°+$\frac{1}{2}$(2cos220°-1)-$\frac{1}{4}$
=1-$\frac{1}{2}-\frac{1}{4}$
=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查和差化积以及二倍角公式的应用,三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,已知椭圆C的中心在原点,焦点 F1,F2在x轴上,焦距与短轴长均为2$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l经过椭圆C的右焦点F2,与椭圆C交于A,B两点,且|AB|是|F1A|与|F1B|的等差中项,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合P={4,5},Q={1,2},定义P⊕Q={x|x=p-q,p∈P,q∈Q},求集合P⊕Q的所有真子集的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某锥体三视图如图,根据图中所标数据,该锥体的各侧面中,面积最大的是(  )
A.3B.2$\sqrt{5}$C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知D是以点A(4,1)、B(-1,-6)、C(-3,2)为顶点的三角形区域(包括边界及内部).
(1)写出表示区域D的不等式组;
(2)设点B(-1,-6)、C(-3,2)在直线4x-3y-a=0的异侧,求a的取值范围;
(3)若目标函数z=kx+y(k<0)的最小值为-k-6,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{x}{x+2}$,数列{an}满足a1=1,an+1=f(an)(n∈N*).
(1)求数列{an}的通项公式an
(2)若数列{bn}满足bn=2nanan+1,Sn=b1+b2+…+bn,求证:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正项等比数列{an}的前n项和为Sn,且S5=6+7$\sqrt{2}$,S7-S2=12+14$\sqrt{2}$,则公比q为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知地球的半径为R,在南纬α的纬度圈上有A、B两点,若沿纬度圈这两点间的距离为πRcosα,则A、B两点间的球面距离为(π-2α)R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,椭圆过(2,$\sqrt{2}$)且离心率为$\frac{{\sqrt{2}}}{2}$,
(1)求椭圆的标准方程;
(2)A为椭圆上异于椭圆左右顶点的任意一点,B与A关于原点O对称,直线AF交椭圆于另外一点C,直线BF交椭圆于另外一点D,
①求直线DA与直线DB的斜率之积
②判断直线AD与直线BC的交点M是否在一条直线上?说明理由.

查看答案和解析>>

同步练习册答案