精英家教网 > 高中数学 > 题目详情
12.函数f(x)=$\frac{1}{2x+1}$,x∈[1,4]的最小值是$\frac{1}{9}$.

分析 根据函数f(x)的单调性,可知f(x)=$\frac{1}{2x+1}$在区间[1,4]上的单调性,从而求得函数的最小值.

解答 解:∵函数f(x)=$\frac{1}{2x+1}$在(-$\frac{1}{2}$,+∞)上单调递减,
∴f(x)在区间[1,4]上的单调递减,
∴f(x)在区间[1,4]上的最小值为:
f(4)=$\frac{1}{2×4+1}$=$\frac{1}{9}$.
故答案为:$\frac{1}{9}$.

点评 本题考查了利用基本初等函数的单调性求函数在闭区间上的最值问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$(sin2x-cos2x)+2sinxcosx.
(1)求f(x)的最小正周期;
(2)设x∈[0,$\frac{π}{3}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A(2,3)B(-3,-2)若有直线l:kx-y+1-k=0,与线段AB相交,则k的取值范围为(  )
A.k≥2或k≤$\frac{3}{4}$B.$\frac{3}{4}$≤k≤2C.k≥$\frac{3}{4}$D.k≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f'(x),且有2f(x)+xf'(x)>x2,则不等式(x+2016)2f(x+2016)-9f(-3)<0的解集为(  )
A.(-2019,-2016)B.(-2019,2016)C.(-2019,+∞)D.(-∞,-2019)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=ex(x-aex)(其中e为自然对数的底数)恰有两个极值点x1,x2(x1<x2),则下列说法不正确的是(  )
A.0<a<$\frac{1}{2}$B.-1<x1<0C.-$\frac{1}{2}$<f(x1)<0D.f(x1)+f(x2)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.甲、乙、丙、丁四位同学各自在周六、周日两天中随机选一天郊游,则周六、周日都有同学参加郊游的情况共有(  )
A.2种B.10种C.12种D.14种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=loga(x-k)的图象过点(4,0),又其反函数f-1(x)的图象过点(1,7),则函数y=x-a是(  )
A.增函数B.减函数C.奇函数D.偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sin(x+$\frac{π}{3}}$)cosx.
(1)若x∈[0,$\frac{π}{2}}$],求f(x)的取值范围;
(2)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=$\frac{{\sqrt{3}}}{2}$,b=2,c=3,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0},则下面判断正确的是(  )
A.p假q真B.“p∨q”为真C.“p∧q”为真D.“¬q”为假

查看答案和解析>>

同步练习册答案