分析 (1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=2sin(2x-$\frac{π}{3}$),利用周期公式即可计算得解.
(2)由已知可求-$\frac{π}{3}$≤2x-$\frac{π}{3}$≤$\frac{π}{3}$,利用正弦函数的性质即可得解f(x)的值域.
解答 解:(1)∵f(x)=-$\sqrt{3}$(cos2x-sin2 x)+2sinxcosx
=-$\sqrt{3}$cos 2x+sin 2x=2sin(2x-$\frac{π}{3}$),
∴f(x)的最小正周期为π.
(2)∵x∈[0,$\frac{π}{3}$],
∴-$\frac{π}{3}$≤2x-$\frac{π}{3}$≤$\frac{π}{3}$,
∴-$\frac{\sqrt{3}}{2}$≤sin(2x-$\frac{π}{3}$)≤$\frac{\sqrt{3}}{2}$,
∴-$\sqrt{3}$≤2sin(2x-$\frac{π}{3}$)≤$\sqrt{3}$,
∴值域为[-$\sqrt{3}$,$\sqrt{3}$].
点评 本题主要考查了三角函数恒等变换的应用,周期公式,正弦函数的图象和性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12个 | B. | 8个 | C. | 6个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “p且q”为真 | B. | “p或q”为真 | C. | p假q真 | D. | p,q均为假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com