精英家教网 > 高中数学 > 题目详情
11.函数f(x)=$\sqrt{1-x}$+$\sqrt{1+x}$的定义域是(  )
A.(-1,1)B.(-∞,-1)∪[1,+∞)C.[0,1]D.[-1,1]

分析 由根式内部的代数式大于等于0联立不等式组得答案.

解答 解:要使原函数有意义,则$\left\{\begin{array}{l}{1-x≥0}\\{1+x≥0}\end{array}\right.$,解得:-1≤x≤1.
∴函数f(x)=$\sqrt{1-x}$+$\sqrt{1+x}$的定义域是[-1,1].
故选:D.

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列说法
①将一组数据中的每一个数都加上同一个常数后,该组数据方差不变;
②设回归直线方程为$\hat y=-5x+3$,则变量x每增加1个单位,y就平均增加5个单位;
③某人射击一次,击中目标的概率为0.6,那么他连续5次射击时,恰有4次击中目标的概率是$C_5^4×{0.6^4}×0.4$
其中正确的说法是(  )
A.①②③B.①②C.①③D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求满足[$\sqrt{n+\sqrt{n+\sqrt{n}}}$]=2的正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设命题p:点(2x+3-x2,x-2)在第四象限,命题q:x2-(3a+6)x+2a2+6a<0,其中a>-6,若¬p是¬q的充分不必要条件,则实数a的取值范围是∅.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.到两定点O(0,0),A(0,3)的距离的比为$\frac{1}{2}$的点的轨迹方程为x2+(y+1)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.证明:$\begin{array}{l}\frac{(n+1)!}{k!(n+1-k)!}$=$\frac{n!}{k!(n-k)!}$+$\frac{n!}{(k-1)!(n-k+1)!}\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,已知2$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\sqrt{3}$|$\overrightarrow{AB}$||$\overrightarrow{AC}$|=3|$\overrightarrow{BC}$|2,求角A,B,C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin2x-sin2(x-$\frac{π}{6}$),x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-$\frac{π}{3}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知p:一元二次方程x2+(2m+1)x+m2=0的解集有且只有一个真子集,若非p为假命题,则m=$-\frac{1}{4}$.

查看答案和解析>>

同步练习册答案