| A. | $\frac{{\sqrt{2}}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
分析 设平行于直线y=x的直线y=x+b与曲线y=ex相切,则两平行线间的距离即为|PQ|的最小值,由导数和切线的关系,再由平行线的距离公式可得最小值.
解答 解:设平行于直线y=x的直线y=x+b与曲线y=ex相切,
则两平行线间的距离即为|PQ|的最小值,
设直线y=x+b与曲线y=ex的切点为(m,em),
则由切点还在直线y=x+b可得em=m+b,
由切线斜率等于切点的导数值可得em=1,
联立解得m=0,b=1,
由平行线间的距离公式可得|PQ|的最小值为$\frac{|1-0|}{\sqrt{{1}^{2}+(-1)^{2}}}$=$\frac{\sqrt{2}}{2}$.
故选:A.
点评 本题考查导数的运用:求切线的斜率,考查平行线间的距离公式,等价转化是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 微信控 | 非微信控 | 合计 | |
| 男性 | 26 | 24 | 50 |
| 女性 | 30 | 20 | 50 |
| 合计 | 56 | 44 | 100 |
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
| k0 | 0.455 | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com