精英家教网 > 高中数学 > 题目详情
16.已知圆C:(x-a)2+(y-a)2=1(a>0)与直线y=2x相交于P、Q两点,则当△CPQ的面积为$\frac{1}{2}$时,实数a的值为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{{\sqrt{5}}}{4}$D.$\frac{{\sqrt{10}}}{4}$

分析 求出圆的圆心坐标与半径,利用圆心到直线的距离与半弦长求解三角形的面积,然后求出最大值即可.

解答 解:圆C:(x-a)2+(y-a)2=1(a>0)的圆心(a,a)半径为1,
圆心到直线y=2x的距离d=$\frac{|2a-a|}{\sqrt{5}}$=$\frac{a}{\sqrt{5}}$,半弦长为:$\sqrt{1-(\frac{a}{\sqrt{5}})^{2}}$=$\sqrt{1-\frac{{a}^{2}}{5}}$,
∴△CPQ的面积S=$\frac{1}{2}$•2$\sqrt{1-\frac{{a}^{2}}{5}}$•$\frac{a}{\sqrt{5}}$=$\sqrt{(1-\frac{{a}^{2}}{5})^{2}•\frac{{a}^{2}}{5}}$,故当$\frac{{a}^{2}}{5}$=$\frac{1}{2}$,即a=$\frac{\sqrt{10}}{2}$时,S取得最大值为$\frac{1}{2}$,
故选:B.

点评 本题考查直线与圆的位置关系的应用,三角形面积的最值的求法,点到直线的距离公式的应用等知识,考查分析问题解决问题的能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.过点M(2,2)的直线与抛物线L:x2=2py相交于不同两点A,B,若点M恰为线段AB的中点,则实数p的取值范围是(  )
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,1)C.(1,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={-1,1},B={x|ax+1=0},若B⊆A,求实数a所有可能取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=2sin(2x+\frac{π}{4})$,x∈R
(1)写出函数f(x)的最小正周期、对称轴方程及单调区间;
(2)求函数f(x)在区间$[{0,\frac{π}{2}}]$上的最值及取最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC中,角A,B,C所对的边分别是a,b,c,∠A=60°,c=2,且△ABC的面积为$\frac{{\sqrt{3}}}{2}$,则边b的长为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=ax2+bx+3a+b的图象关于y轴对称,且其定义域为[a-1,2a](a,b∈R),则函数f(x)的单调减区间为[$-\frac{2}{3}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{{{x^2}ln|x|}}{|x|}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如果集合A={x|ax2+4x+4=0}中只有一个元素,则a的值是0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax(a>0且a≠1)的图象经过点(2,$\frac{1}{9}$).
(1)求a的值;
(2)比较f(2)与f(b2+2)的大小;
(3)求函数f(x)=a${\;}^{{x}^{2}-2x}$(x≥0)的值域.

查看答案和解析>>

同步练习册答案