| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{10}}}{2}$ | C. | $\frac{{\sqrt{5}}}{4}$ | D. | $\frac{{\sqrt{10}}}{4}$ |
分析 求出圆的圆心坐标与半径,利用圆心到直线的距离与半弦长求解三角形的面积,然后求出最大值即可.
解答 解:圆C:(x-a)2+(y-a)2=1(a>0)的圆心(a,a)半径为1,
圆心到直线y=2x的距离d=$\frac{|2a-a|}{\sqrt{5}}$=$\frac{a}{\sqrt{5}}$,半弦长为:$\sqrt{1-(\frac{a}{\sqrt{5}})^{2}}$=$\sqrt{1-\frac{{a}^{2}}{5}}$,
∴△CPQ的面积S=$\frac{1}{2}$•2$\sqrt{1-\frac{{a}^{2}}{5}}$•$\frac{a}{\sqrt{5}}$=$\sqrt{(1-\frac{{a}^{2}}{5})^{2}•\frac{{a}^{2}}{5}}$,故当$\frac{{a}^{2}}{5}$=$\frac{1}{2}$,即a=$\frac{\sqrt{10}}{2}$时,S取得最大值为$\frac{1}{2}$,
故选:B.
点评 本题考查直线与圆的位置关系的应用,三角形面积的最值的求法,点到直线的距离公式的应用等知识,考查分析问题解决问题的能力,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,+∞) | B. | ($\frac{1}{2}$,1) | C. | (1,+∞) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com