精英家教网 > 高中数学 > 题目详情
11.已知△ABC中,角A,B,C所对的边分别是a,b,c,∠A=60°,c=2,且△ABC的面积为$\frac{{\sqrt{3}}}{2}$,则边b的长为1.

分析 利用三角形面积公式列出关系式,把已知面积,c,sinA的值代入即可求出b的值.

解答 解:∵△ABC中,∠A=60°,c=2,且△ABC的面积为$\frac{{\sqrt{3}}}{2}$=$\frac{1}{2}$bcsinA,
∴$\frac{1}{2}$×b×2×$\frac{\sqrt{3}}{2}$=$\frac{{\sqrt{3}}}{2}$,
∴解得:b=1.
故答案为:1.

点评 此题考查了三角形面积公式在解三角形中的应用,熟练掌握三角形面积公式是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.若幂函数y=(m2-3m+3)x${\;}^{{m}^{2}-m-2}$的图象不经过坐标原点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是(  )
A.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1B.f(x)=|x|,g(x)=($\sqrt{x}$)2
C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}的通项an=n2(sin2$\frac{nπ}{3}$-cos2$\frac{nπ}{3}$),其前n项和为Sn,则S30=-470.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)={x^2}-3\left|x\right|+\frac{1}{4}(x∈R)$
(1)判断函数的奇偶性;
(2)画出函数的图象;
(3)指数函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆C:(x-a)2+(y-a)2=1(a>0)与直线y=2x相交于P、Q两点,则当△CPQ的面积为$\frac{1}{2}$时,实数a的值为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{{\sqrt{5}}}{4}$D.$\frac{{\sqrt{10}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=AA1=2,AC=$\sqrt{5}$,BC=3,M,N分别为B1C1、AA1的中点.
(1)求证:平面ABC1⊥平面AA1C1C;
(2)求证:MN∥平面ABC1,并求M到平面ABC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}满足a1=0,an+1=an+2n,那么a2017的值是(  )
A.20162B.2014×2015C.2015×2016D.2016×2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a∈R,则“a=0”是“cosa>sina”的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案