分析 (1)当M是AE线段的中点时,连接CE,交DF于N,连接MN,推导出MN∥AC,由此能证明AC∥平面DMF.
(2)由VM-ADF=VF-MDA,能求出三棱锥M-ADF的体积.
解答 解:(1)当M是AE线段的中点时,AC∥平面DMF,
证明如下:
连接CE,交DF于N,连接MN,
由于M、N分别是AE、CE的中点,所以MN∥AC,
由于MN?平面DMN,又AC?平面DMF,
所以AC∥平面DMF.
(2)∵∠AED=45°,AE=$\sqrt{2}$,
∴AD=DE=1,DC=2,
VM-ADF=VF-MDA,S△MDA=$\frac{1}{2}×1×\frac{1}{2}=\frac{1}{4}$,h=CD=2,
∴三棱锥M-ADF的体积VM-ADF=$\frac{1}{3}×\frac{1}{4}×2$=$\frac{1}{6}$.
点评 本题考查满足线面平行的点的位置的确定与证明,考查三棱锥的体积的求法,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,考查创新意识、应用意识,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 非体育迷 | 体育迷 | 合计 | |
| 男 | 30 | 15 | 45 |
| 女 | 45 | 10 | 55 |
| 合计 | 75 | 25 | 100 |
| P(K2≥k) | 0.05 | 0.01 |
| k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com