分析 (1)设DN的长为x(x>0)米,则|AN|=(x+1)米,表示出矩形的面积,利用矩形AMPN的面积大于9平方米,即可求得DN的取值范围.
(2)化简矩形的面积,利用基本不等式,即可求得结论.
解答 解:(1)设DN的长为x(x>0)米,则|AN|=(x+1)米,
∵$\frac{DN}{AN}=\frac{DC}{AM}$,∴|AM|=$\frac{2(x+1)}{x}$,∴S矩形AMPN=|AN|•|AM|=$\frac{2(x+1)^{2}}{x}$.
由S矩形AMPN>9得$\frac{2(x+1)^{2}}{x}$>9,又x>0得2x2-5x+2>0,解得0<x<$\frac{1}{2}$或x>2…(6分)
即DN的长的取值范围是(0,$\frac{1}{2}$)∪(2,+∞).(单位:米)
(2)因为x>0,所以矩形花坛的面积为:
y=$\frac{2(x+1)^{2}}{x}$=2x+$\frac{4}{x}$+4≥4+4=8,当且仅当2x=$\frac{4}{x}$,即x=1时,等号成立.…(12分)
答:矩形花坛的面积最小为8平方米.…(13分)
点评 本题考查根据题设关系列出函数关系式,并求出处变量的取值范围;考查利用基本不等式求最值,解题的关键是确定矩形的面积.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(\sqrt{2})<f(3)<f(4)$ | B. | $f(3)<f(\sqrt{2})<f(4)$ | C. | $f(\sqrt{2})<f(4)<f(3)$ | D. | $f(3)<f(4)<f(\sqrt{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com