精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=-x2+6x+a2-1,那么下列式子中正确的是(  )
A.$f(\sqrt{2})<f(3)<f(4)$B.$f(3)<f(\sqrt{2})<f(4)$C.$f(\sqrt{2})<f(4)<f(3)$D.$f(3)<f(4)<f(\sqrt{2})$

分析 f(x)=-x2+6x+a2-1=-(x-3)2+a2-10,对称轴为x=3,开口向下,即可得出结论.

解答 解:f(x)=-x2+6x+a2-1=-(x-3)2+a2-10,对称轴为x=3,开口向下,
∴$f(\sqrt{2})<f(4)<f(3)$,
故选C.

点评 本题考查二次函数的性质,考查配方法的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(1,cosθ),-$\frac{π}{2}$<θ$<\frac{π}{2}$.
(Ⅰ)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求tanθ的值.
(Ⅱ)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各3张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为189.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
非体育迷体育迷合计
301545
451055
合计7525100
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X分布列,期望E(X)和方差D(X).
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.sin72°cos18°+cos72°sin18°的值为(  )
A.1B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x2-2bx+3在x∈[-1,2]时有最小值1,则实数b=-$\frac{3}{2}$或$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.
(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?
(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中,真命题的个数为(  )
①若a,b,c∈R则“a>b”是“ac2>bc2”成立的充分不必要条件;
②若椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的两个焦点为F1,F2,且弦AB过点F1,则△ABF2的周长为20.
③若命题“¬p”与命题“p或q”都是真命题,则命题q一定是真命题;
④若命题p:?x∈R,x2+x+1<0,则¬p:?x∈R,x2+x+1≥0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\left\{\begin{array}{l}{log_3}x\\{x^2}\\{3^x}\end{array}\right.$$\begin{array}{l}x>1\\-1<x≤1\\ x≤-1\end{array}$,则$f({-f({\sqrt{3}})})+f({f(0)})+f({\frac{1}{{f({-1})}}})$=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.$\frac{5}{4}$

查看答案和解析>>

同步练习册答案