精英家教网 > 高中数学 > 题目详情
13.若${(\root{3}{a^2}-\frac{2}{a})^7}$的展开式中a3项的系数为(  )
A.14B.-14C.280D.-280

分析 在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得展开式中a3项的系数.

解答 解:∵${(\root{3}{a^2}-\frac{2}{a})^7}$的展开式的通项公式为 Tr+1=${C}_{7}^{r}$•(-2)r•${a}^{\frac{14-5r}{3}}$,令$\frac{14-5r}{3}$=3,求得r=1,
可得展开式中a3项的系数为${C}_{7}^{1}$•(-2)=-14,
故选:B.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知命题P:函数y=loga(1+2x)在定义域上单调递减;命题Q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立.若P∨Q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.
(Ⅰ)如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出计算式即可,不必计算出结果)
(Ⅱ)随机抽取8位,他们的数学分数从小到大排序是:60,65,70,75,80,85,90,95,物理分数从小到大排序是:72,77,80,84,88,90,93,95.
(i)若规定85分以上(包括85分)为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;
(ii)若这8位同学的数学、物理分数事实上对应如下表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
根据上表数据,用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:相关系数r=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}}}$;回归直线的方程是:$\widehaty=bx+a$,其中对应的回归估计值b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline y-b\overline x$,$\widehat{y_i}$是与xi对应的回归估计值.
参考数据:$\overline x=77.5,\overline y=84.875,{\sum_{i=1}^8{({x_i}-\overline x)}^2}≈1050,{\sum_{i=1}^8{({y_i}-\overline y)}^2}$≈457,$\sum_{i=1}^8{({x_i}-\overline x)}({y_i}-\overline y)≈688,\sqrt{1050}≈32.4,\sqrt{457}≈21.4,\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow a=({2,1}),\overrightarrow b=({-3,4})$,则$\overrightarrow a+\overrightarrow b$=(  )
A.(6,-3)B.(8,-3)C.(5,-1)D.(-1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图在△ABC中,AB=$\frac{{3\sqrt{6}}}{2}$,CD=5,∠ABC=45°,∠ACB=60°,则AD=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x1=18,x2=19,x3=20,x4=21,x5=22,将这五个数据依次输入下边程序框进行计算,则输出的S值及其统计意义分别是(  )
A.S=2,即5个数据的方差为2B.S=2,即5个数据的标准差为2
C.S=10,即5个数据的方差为10D.S=10,即5个数据的标准差为10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若$cosxcosy-sinxsiny=\frac{1}{2},sin2x-sin2y=\frac{2}{3}$,则sin(x-y)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆台的上、下底面的半径分别是3,4,且侧面面积等于两底面面积之和,求圆台的母线长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线5x+12y+a=0与圆(x-1)2+y2=1相切,则a的值为8或-18.

查看答案和解析>>

同步练习册答案