ijͬѧÓá°Îåµã·¨¡±»­º¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©+B£¨A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
¦Ð
2
£©ÔÚijһ¸öÖÜÆÚÄÚµÄͼÏóʱ£¬ÁÐ±í²¢ÌîÈëµÄ²¿·ÖÊý¾ÝÈçÏÂ±í£º
xx1
1
3
x2
7
3
x3
¦Øx+¦Õ0
¦Ð
2
¦Ð
3¦Ð
2
2¦Ð
Asin£¨¦Øx+¦Õ£©0
3
0-
3
0
£¨¢ñ£©ÇëÇó³öÉϱíÖеÄx1£¬x2£¬x3£¬²¢Ö±½Óд³öº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©½«f£¨x£©µÄͼÏóÑØxÖáÏòÓÒÆ½ÒÆ
2
3
¸öµ¥Î»µÃµ½º¯Êýg£¨x£©£¬Èôº¯Êýg£¨x£©ÔÚx¡Ê[0£¬m]£¨ÆäÖÐm¡Ê£¨2£¬4£©ÉϵÄÖµÓòΪ[-
3
£¬
3
]£¬ÇÒ´ËʱÆäͼÏóµÄ×î¸ßµãºÍ×îµÍµã·Ö±ðΪP¡¢Q£¬Çó
OQ
Óë
QP
¼Ð½Ç¦ÈµÄ´óС£®
¿¼µã£ºÓÉy=Asin£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÈ·¶¨Æä½âÎöʽ,º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»
רÌ⣺Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£º£¨¢ñ£©ÓÉÎåµã×÷ͼµÄµÚ¶þµãºÍµÚËĵãÁÐʽÇó³ö¦Ø£¬¦ÕµÄÖµ£¬Ôòº¯Êý½âÎöʽ¿ÉÇó£¬ÔÙÓÉÎåµã×÷ͼµÄµÚÒ»¡¢Èý¡¢ÎåµãÇó½âx1£¬x2£¬x3µÄÖµ£»
£¨¢ò£©Çó³öÆ½ÒÆºóµÄº¯Êý½âÎöʽ£¬½áºÏg£¨x£©ÔÚx¡Ê[0£¬m]£¨ÆäÖÐm¡Ê£¨2£¬4£©ÉϵÄÖµÓòΪ[-
3
£¬
3
]ÇóµÃͼÏóµÄ×î¸ßµãºÍ×îµÍµã·Ö±ðΪP¡¢QµÄ×ø±ê£¬´úÈëÏòÁ¿µÄ¼Ð½Ç¹«Ê½µÃ´ð°¸£®
½â´ð£º ½â£º£¨¢ñ£©ÓÉͼ±í¿ÉÖª£¬
1
3
¦Ø+¦Õ=
¦Ð
2
7
3
¦Ø+¦Õ=
3¦Ð
2
£¬½âµÃ
¦Ø=
¦Ð
2
¦Õ=
¦Ð
3
£®
ÓÉ
¦Ð
2
x1+
¦Ð
3
=0
£¬µÃx1=-
2
3
£®
ÓÉ
¦Ð
2
x2+
¦Ð
3
=¦Ð
£¬µÃx2=
4
3
£®
ÓÉ
¦Ð
2
x3+
¦Ð
3
=2¦Ð
£¬µÃx3=
10
3
£®
¡àf(x)=
3
sin(
¦Ð
2
x+
¦Ð
3
)
£»
£¨¢ò£©½«f£¨x£©µÄͼÏóÑØxÖáÏòÓÒÆ½ÒÆ
2
3
¸öµ¥Î»µÃµ½º¯Êýg£¨x£©=
3
sin
¦Ð
2
x
£¬
ÓÉÓÚg£¨x£©ÔÚx¡Ê[0£¬m]£¨ÆäÖÐm¡Ê£¨2£¬4£©ÉϵÄÖµÓòΪ[-
3
£¬
3
]£¬
Ôòm¡Ý3£¬¹Ê×î¸ßµãΪP(1£¬
3
)
£¬×îµÍµãΪQ£¨3£¬-
3
£©£®
Ôò
OQ
=(3£¬-
3
)£¬
QP
=(-2£¬2
3
)
£¬
Ôòcos¦È=
OQ
QP
|
OQ
|•|
QP
|
=-
3
2
£®
¡ß¦È¡Ê[0£¬¦Ð]£¬
¡à¦È=
5¦Ð
6
£®
µãÆÀ£º±¾Ì⿼²éÁËÈý½Çº¯ÊýµÄÎåµã×÷ͼ·¨£¬¿¼²éÁËy=Asin£¨¦Øx+¦Õ£©µÄͼÏóµÄ±ä»»£¬ÑµÁ·ÁËÏòÁ¿µÄ¼Ð½Ç¹«Ê½µÄÓ¦Óã¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÌÖÂÛ¹ØÓÚxµÄ·½³Ì|x2+2x-3|=aµÄʵ¸ùµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x2-alnx£¬a¡ÊR£®
£¨¢ñ£©µ±a=4ʱ£¬Çóº¯Êýf£¨x£©ÔÚ[1£¬e]ÉϵÄ×îСֵ¼°ÏàÓ¦µÄxµÄÖµ£»
£¨¢ò£©Èô´æÔÚx¡Ê[2£¬e]£¬Ê¹µÃf£¨x£©¡Ý£¨a-2£©x³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª|
a
|=1£¬
a
b
=
1
2
£¬£¨
a
+
b
£©•£¨
a
-
b
£©=
1
2
£¬Çó£º
£¨1£©
a
Óë
b
µÄ¼Ð½Ç£»
£¨2£©
a
+
b
Óë
a
-
b
µÄ¼Ð½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½â¹ØÓÚxµÄ²»µÈʽ£ºx2-£¨a+a2£©x+a2£¾0£¨a£¾0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©¶ÔÓÚÈÎÒâʵÊýx£¬y£¬×ÜÓÐf£¨x+y£©=f£¨x£©+f£¨y£©£¬ÇÒµ±x£¼0ʱf£¨x£©£¾0£¬f£¨1£©=-2
£¨1£©Çóf£¨-1£©£»
£¨2£©ÇóÖ¤£ºf£¨x£©ÔÚRÉÏÊǼõº¯Êý£»
£¨3£©Çóf£¨x£©ÔÚ[-4£¬4]ÉÏ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèf£¨x£©ÊǶ¨ÒåÔÚRÉϵĺ¯Êý£¬¶ÔÈÎÒâµÄx£¬y¡ÊR£¬ºãÓÐf£¨x+y£©=f£¨x£©•f£¨y£©£¬ÇÒµ±x£¾0ʱ£¬0£¼f£¨x£©£¼1
£¨1£©Çóf£¨0£©£®
£¨2£©Ö¤Ã÷£ºx¡ÊRʱ£¬ºãÓÐf£¨x£©£¾0£®
£¨3£©ÇóÖ¤£ºf£¨x£©ÔÚRÉÏÊǼõº¯Êý£®
£¨4£©Èôf£¨x£©•f£¨2+x£©£¾1£¬ÇóxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

³¤·½ÌåABCD-A1B1C1D1ÖУ¬µ×ÃæÊDZ߳¤Îª2µÄÕý·½ÐΣ¬AA1=4£®
£¨1£©Ëµ³öBD1ÓëÆ½ÃæBCC1B1Ëù³É½Ç£¬²¢Çó³öËüµÄÓàÏÒÖµ£»
£¨2£©Ö¸³ö¶þÃæ½ÇD1-AC-DµÄÆ½Ãæ½Ç£¬²¢Çó³öËüµÄÕýÇÐÖµ£»
£¨3£©Çó¸Ã³¤·½ÌåµÄÍâ½ÓÇòµÄ±íÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýy=tan2xµÄ×îСÕýÖÜÆÚ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸