精英家教网 > 高中数学 > 题目详情
设f(x)是定义在R上的函数,对任意的x,y∈R,恒有f(x+y)=f(x)•f(y),且当x>0时,0<f(x)<1
(1)求f(0).
(2)证明:x∈R时,恒有f(x)>0.
(3)求证:f(x)在R上是减函数.
(4)若f(x)•f(2+x)>1,求x的取值范围.
考点:抽象函数及其应用,函数单调性的性质
专题:函数的性质及应用
分析:(1)令x=y=0,代入f(x)•f(y)=f(x+y)即可得到f(0)的方程,再判断f(0)≠0;
(2)任意的x,y∈R,令x=y=
1
2
x,即可证得对任意的x∈R,有f(x)>0;
(3)设x1,x2∈R且x1<x2,利用定义法作差,整理后即可证得差的符号,进而由定义得出函数的单调性;
(4)由题意得(x)•f(2+x)=f(2+2x)>1=f(0),得到不等式,解得即可.
解答: 解:(1)可得f(0)•f(0)=f(0)
∴f(0)=1,或f(0)=0,
若f(0)=0,令y=0,则f(0)=0恒成立,故舍去,
∴f(0)=1
(2)任意的x,y∈R,令x=y=
1
2
x,
则f(x)=f(
1
2
x+
1
2
x
)=f(
1
2
x
)•f(
1
2
x)=[f(
1
2
x)]2>0,
∴x∈R时,恒有f(x)>0.
(3)设x1,x2∈R且x1<x2,则f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x2)[f(x1-x2)-1]
∵x1-x2<0
∴f(x1-x2)>f(0)=1
∴f(x1-x2)-1>0
对f(x2)>0
∴f(x2)f[(x1-x2)-1]>0
∴f(x1)>f(x2)故f(x)在R上是减函数
(4)∵f(x)•f(2+x)>1,
∴f(2+2x)>1=f(0),
∵f(x)在R上是减函数,
∴2+2x<0
解得x<-1,
故x的取值范围为(-∞,-1)
点评:本题考点是抽象函数及其应用,考查灵活赋值求值的能力以及灵活变形证明函数单调性的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=1+
3
x-2
,x∈[3,7].
(1)判断函数f(x)的单调性,并用定义加以证明;
(2)求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,c所对的边分别为a,b,c且acosC-
1
2
c=b.
(Ⅰ)求角A的大小
(Ⅱ)若a=1,△ABC的周长用角B表示并求周长取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)在某一个周期内的图象时,列表并填入的部分数据如下表:
xx1
1
3
x2
7
3
x3
ωx+φ0
π
2
π
2
Asin(ωx+φ)0
3
0-
3
0
(Ⅰ)请求出上表中的x1,x2,x3,并直接写出函数f(x)的解析式;
(Ⅱ)将f(x)的图象沿x轴向右平移
2
3
个单位得到函数g(x),若函数g(x)在x∈[0,m](其中m∈(2,4)上的值域为[-
3
3
],且此时其图象的最高点和最低点分别为P、Q,求
OQ
QP
夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x|x-a|+b.
(1)若b=-1,且f(1)≥0,求实数a的取值范围;
(2)若a=1,b=2,解不等式f(x)<0,
(3)设常数b<2
2
-3,且对任意的x∈[0,1],f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一批某家用电器原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下方法促销:买一台单价800元,买两台每台单价780元,以此类推,每多买一台则所买各台单价均再减少20元,但每台最低不能低于460元;乙商场一律打八折.某单位购买一批此类电器,问去哪家商场购买花费较少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={(x,y)|ax+y=1},B={(x,y)|x+ay=1},C={(x,y)|x2+y2=1}.
(1)当a为何值时,(A∩C)∪(B∩C)为含有两个元素的集合.
(2)当a为何值时,(A∪B)∩C为含有三个元素的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

在下面表格中的n行n列空格内,第1行均已填上1,第1列依次填入首项为1,公比为q的等比数列的前n项,其他各空格均按照“任意一格内的数是它上面一格的数与它左面一格数之和”的规则填写.
第1列第2列第3列第n列
第1行1111
第2行q
第3行q2
第n行qn-1
(Ⅰ)设第2行的数依次为a1,a2,a3,…,an,试用n,q,表示a1+a2+a3+a4+…+an的值;
(Ⅱ)是否存在着q,使得除第1列外,还有不同的两列数的前三项各自依次成等比数列?若存在,请求出q的值,若不存在,请说明理由;
(Ⅲ)设第3列的数依次为b1,b2,b3,…,bn,对于任意非零实数q,求证:b1+b3>2b2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,B=30°,C=120°,则a:b:c=
 

查看答案和解析>>

同步练习册答案