精英家教网 > 高中数学 > 题目详情
设函数f(x)=x|x-a|+b.
(1)若b=-1,且f(1)≥0,求实数a的取值范围;
(2)若a=1,b=2,解不等式f(x)<0,
(3)设常数b<2
2
-3,且对任意的x∈[0,1],f(x)<0恒成立,求实数a的取值范围.
考点:绝对值不等式的解法,函数恒成立问题
专题:综合题,不等式的解法及应用
分析:(1)由题意,|1-a|-1≥0,即可求实数a的取值范围;
(2)不等式可化为x|x-1|+2<0,分类讨论,可得结论;
(3)分类讨论:①当x=0时a取任意实数不等式恒成立;②当0<x≤1时f(x)<0恒成立,再转化为x+
b
x
<a<x-
b
x
恒成立问题,下面利用函数g(x)=x+
b
x
的最值即可求得实数a的取值范围.
解答: 解:(1)由题意,|1-a|-1≥0,∴a≤0或a≥2;
(2)不等式可化为x|x-1|+2<0,即
x≥1
x2-x+2<0
x<1
x2-x-2>0

∴x<1,
∴不等式的解集为{x|x<1};
(3)由b<2
2
-3<0,当x=0时a取任意实数不等式恒成立
当0<x≤1时f(x)<0恒成立,也即x+
b
x
<a<x-
b
x
恒成立
令g(x)=x+
b
x
在0<x≤1上单调递增,∴a>gmax(x)=g(1)=1+b
令h(x)=x-
b
x
,则h(x)在(0,
-b
]上单调递减,[
-b
,+∞)单调递增
1°当b<-1时h(x)=x-
b
x
在0<x≤1上单调递减
∴a<hmin(x)=h(1)=1-b.∴1+b<a<1-b.
2°当-1≤b<2
2
-3时,h(x)=x-
b
x
≥2
-b

∴a<hmin(x)=2
-b
,∴1+b<a<2
-b
点评:本小题主要考查充要条件、函数奇偶性与单调性的应用、不等式的解法等基础知识,考查运算求解能力,化归与转化思想.属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x2-x+a.
(Ⅰ)当a=2时,求函数y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若函数y=f(x)有且仅有一个零点,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

成等差数列的三个数的和等于15,并且这三个数分别加上1,3,9后又成等比数列,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:x2-(a+a2)x+a2>0(a>0).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)计算|1+lg0.001|+
lg2
1
3
-4lg3+4
+lg6-lg0.02.
(2)化简:27 
2
3
-2 log23×log2
1
8
+2lg(
3+
5
+
3-
5
).
(3)已知log147=a,log145=b,则用a,b表示log3528.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的函数,对任意的x,y∈R,恒有f(x+y)=f(x)•f(y),且当x>0时,0<f(x)<1
(1)求f(0).
(2)证明:x∈R时,恒有f(x)>0.
(3)求证:f(x)在R上是减函数.
(4)若f(x)•f(2+x)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的三视图如图所示,M,N分别是A1B、B1C1点中点.
(Ⅰ)求证:MN⊥平面A1BC;
(Ⅱ)求直线BC1与平面A1BC所成角的大小;
(Ⅲ)求二面角A-A1B-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg
kx-1
x-1
(k∈R,且k>0).
(1)求函数的定义域.
(2)若函数f(x)在[10,+∞)上单调递增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求f(x)=sin2x+4sinx+3的最小值为
 

查看答案和解析>>

同步练习册答案