精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1+
3
x-2
,x∈[3,7].
(1)判断函数f(x)的单调性,并用定义加以证明;
(2)求函数f(x)的最大值和最小值.
考点:函数的最值及其几何意义,函数单调性的性质
专题:计算题,函数的性质及应用
分析:(1)由题设条件对任意x1、x2在所给区间内比较f(x2)-f(x1)与0的大小即可得出f(x)在R上是减函数;
(2)根据单调性得出函数的最值即可.
解答: 解:(1)函数f(x)在x∈[3,7]上单调递减,证明如下:
设3≤x1<x2≤7,
则f(x1)-f(x2)=
3
x1-2
-
3
x2-2
=
3(x2-x1)
(x1-2)(x2-2)

∵x1-x2<0,(x1-2)(x2-2)>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴函数f(x)在[3,7]上的单调递减.
(2)由(1)知,∴当x∈[3,7]时,f(x)max=2,f(x)min=
7
4
点评:本题考查灵活利用所给的恒等式证明函数的单调性,此类题要求答题者有较高的数学思辨能力,能从所给的条件中组织出证明问题的组合来.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|lgx|,x>0
-x(x+4),x≤0
,则函数y=f(x)-3的零点的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知sin A:sin B:sin C=4:5:6,且a+b+c=30,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论关于x的方程|x2+2x-3|=a的实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x2-x+a.
(Ⅰ)当a=2时,求函数y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若函数y=f(x)有且仅有一个零点,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,已知前30天价格为f(t)=
1
2
t+30(1≤t≤30),t∈N),后20天价格f(t)=45,(31≤t≤50,t∈N)且销售量近似地满足g(t)=-2t+200(1≤t≤50,t∈N)
(Ⅰ)写出该种商品的日销售额S与时间t的函数关系式;
(Ⅱ)求日销售额S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=alnx-bx2,若函数f(x)在x=1处与直线y=-
1
2
相切.
(1)求实数a,b的值;
(2)求函数f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,a∈R.
(Ⅰ)当a=4时,求函数f(x)在[1,e]上的最小值及相应的x的值;
(Ⅱ)若存在x∈[2,e],使得f(x)≥(a-2)x成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的函数,对任意的x,y∈R,恒有f(x+y)=f(x)•f(y),且当x>0时,0<f(x)<1
(1)求f(0).
(2)证明:x∈R时,恒有f(x)>0.
(3)求证:f(x)在R上是减函数.
(4)若f(x)•f(2+x)>1,求x的取值范围.

查看答案和解析>>

同步练习册答案