精英家教网 > 高中数学 > 题目详情

【题目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)当x∈[0, ]时,求| + |的取值范围;
(2)若g(x)=( + ,求当k为何值时,g(x)的最小值为﹣

【答案】
(1)解: =(sinx﹣2cosx,sinx),

| |2=(sinx﹣2cosx,sinx)2

=2sin2x﹣4sinxcosx+4cos2x

=2cos2x﹣4sinxcosx+2

=cos2x﹣2sin2x+3

= cos(2x+φ)+3,其中,tanφ=2,

又∵x∈[0, ],

上单调递减,

∴| cos(2x+φ)|2∈[1,4],

∴| + |∈[1,2].


(2)解: =(2sinx,cosx+k),

g(x)=(

=﹣4sinxcosx+(cosx+k)(sinx﹣k)

=﹣3sinxcosx+k(sinx﹣cosx)﹣k2

令t=sinx﹣cosx= sin(x﹣ ),

则t∈[﹣ ],且t2=sin2x+cos2x﹣2sinxcosx=1﹣2sinxcosx,

所以

所以g(x)可化为

对称轴

①当 ,即 时,

,得

所以

因为

所以此时无解.

②当 ,即 时,

由﹣ =﹣ ,得k=0∈[﹣3 ,3 ].

③当﹣ ,即k<﹣3 时,

g(x)min=h( )=﹣k2+ k+

由﹣k2+ k+ =﹣ ,得k2 k﹣3=0,

所以k=

因为k ,所以此时无解.

综上所述,当k=0时,g(x)的最小值为﹣


【解析】(1)由已知利用平面向量的坐标运算可得 =(sinx﹣2cosx,sinx),利用三角函数恒等变换的应用可得| |2= cos(2x+φ)+3,其中,tanφ=2,又x∈[0, ],可求 ,利用余弦函数的单调性即可得解| + |的取值范围;(2)利用平面向量数量积的运算可得g(x)=﹣3sinxcosx+k(sinx﹣cosx)﹣k2,令t=sinx﹣cosx= sin(x﹣ ),则g(x)可化为 ,对称轴 .利用二次函数的图象和性质分类讨论即可得解.
【考点精析】利用平面向量的坐标运算对题目进行判断即可得到答案,需要熟知坐标运算:设;;设,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为 ,底面是边长为 的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为(
A.120°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正整数N除以正整数m后的余数为n,则记为N≡n(bmodm),例如10≡2(bmod4).下面程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的i等于(
A.4
B.8
C.16
D.32

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= ,a为常数,且a∈(0,1).
(1)若x0满足f(x0)=x0 , 则称x0为f(x)的一阶周期点,证明函数f(x)有且只有两个一阶周期点;
(2)若x0满足f(f(x0))=x0 , 且f(x0)≠x0 , 则称x0为f(x)的二阶周期点,当a= 时,求函数f(x)的二阶周期点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x),满足f(x+1)=f(x﹣1),且f(x)在[﹣3,﹣2]上是增函数,又α、β是锐角三角形的两个内角,则(
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(sinα)<f(cosβ)
D.f(sinα)<f(sinβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C的对边分别是a,b,c,且A、B、C成等差数列
(1)若 ,求△ABC的面积
(2)若sinA、sinB、sinC成等比数列,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱ABC﹣A1B1C1的各个棱长都相等,E为BC的中点,动点F在CC1上,且不与点C重合
(1)当CC1=4CF时,求证:EF⊥A1C
(2)设二面角C﹣AF﹣E的大小为α,求tanα的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)2 . (Ⅰ)求函数的单调区间;
(Ⅱ)若函数f(x)有两个零点x1 , x2 , 证明x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin 的图象,只需把函数y=sin3x的图象上所有的点(
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

同步练习册答案