分析 利用抛物线的性质、双曲线的渐近线、直线平行的性质、圆的性质、相似三角形的性质即可得出.
解答 解:如图,设抛物线y2=4cx的准线为l,作PQ⊥l于Q,![]()
设双曲线的右焦点为F′,P(x,y).
由题意可知FF′为圆x2+y2=c2的直径,
∴PF′⊥PF,且tan∠PFF′=$\frac{b}{a}$,|FF′|=2c,
满足y2=4cx①,x2+y2=c2②,$\frac{y}{x+c}$=$\frac{b}{a}$,
将①代入②得x2+4cx-c2=0,
则x=-2c±$\sqrt{5}$c,
即x=($\sqrt{5}$-2)c,(负值舍去)
代入③,即y=$\frac{bc(\sqrt{5}-1)}{a}$,再将y代入①得,$\frac{{b}^{2}}{{a}^{2}}$=$\frac{4(\sqrt{5}-2)}{(\sqrt{5}-1)^{2}}$=e2-1
即e2=$\frac{\sqrt{5}+1}{2}$.
故答案为:$\frac{\sqrt{5}+1}{2}$.
点评 本题考查双曲线的性质,掌握抛物线的性质、双曲线的渐近线、直线平行的性质、圆的性质是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{70}{3}$,+∞) | B. | (16,+∞) | C. | (-$\frac{70}{3}$,16) | D. | (-$\frac{70}{4}$,-16) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com