精英家教网 > 高中数学 > 题目详情
6.已知点F(-c,0)(c>0)是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点,过F且平行于双曲线渐近线的直线与圆x2+y2=c2交于另一点P,且点P在抛物线y2=4cx上,则该双曲线的离心率的平方是$\frac{\sqrt{5}+1}{2}$.

分析 利用抛物线的性质、双曲线的渐近线、直线平行的性质、圆的性质、相似三角形的性质即可得出.

解答 解:如图,设抛物线y2=4cx的准线为l,作PQ⊥l于Q,
设双曲线的右焦点为F′,P(x,y).
由题意可知FF′为圆x2+y2=c2的直径,
∴PF′⊥PF,且tan∠PFF′=$\frac{b}{a}$,|FF′|=2c,
满足y2=4cx①,x2+y2=c2②,$\frac{y}{x+c}$=$\frac{b}{a}$,
将①代入②得x2+4cx-c2=0,
则x=-2c±$\sqrt{5}$c,
即x=($\sqrt{5}$-2)c,(负值舍去)
代入③,即y=$\frac{bc(\sqrt{5}-1)}{a}$,再将y代入①得,$\frac{{b}^{2}}{{a}^{2}}$=$\frac{4(\sqrt{5}-2)}{(\sqrt{5}-1)^{2}}$=e2-1
即e2=$\frac{\sqrt{5}+1}{2}$.
故答案为:$\frac{\sqrt{5}+1}{2}$.

点评 本题考查双曲线的性质,掌握抛物线的性质、双曲线的渐近线、直线平行的性质、圆的性质是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.△ABC中,周长为6,a,b,c三边成等比数列,求三角形面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,已知2B=A+C,a+$\sqrt{2}$b=2c,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线x+y+$\sqrt{3}$=0的距离为$\sqrt{6}$,离心率e=$\frac{\sqrt{6}}{3}$
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线l:y=x+m,是否存在实数m,使直线l与椭圆有两个不同的交点M、N,是|AM|=|AN|,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若数列{an}满足“对任意正整数n,$\frac{{{a_n}+{a_{n+2}}}}{2}≤{a_{n+1}}$恒成立”,则称数列{an}为“差非增数列”.
给出下列数列{an},n∈N*
①an=2n+$\frac{1}{n}$+1,②an=n2+1,③an=2n+1,④an=ln$\frac{n}{n+1}$,⑤an=2n+$\frac{1}{n}$.
其中是“差非增数列”的有③④(写出所有满足条件的数列的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}-\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$|,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2x3+(4+$\frac{m}{2}$)x2-8x-16,对于任意的t∈[1,2],函数f(x)在区间(t,3)上不单调,则实数m的取值范围是(  )
A.(-$\frac{70}{3}$,+∞)B.(16,+∞)C.(-$\frac{70}{3}$,16)D.(-$\frac{70}{4}$,-16)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点P为y轴上的动点,点M为x轴上的动点.点F(1,0)为定点,且满足$\overrightarrow{PN}$+$\frac{1}{2}$$\overrightarrow{NM}$=$\overrightarrow{0}$,$\overrightarrow{PM}$•$\overrightarrow{PF}$=0.
(Ⅰ)求动点N的轨迹E的方程.
(Ⅱ)A,B是E上的两个动点,l为AB的中垂线,求当l的斜率为2时,l在y轴上的截距m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.
(1)求直线BE和平面ABB1A1所成角θ的正弦值;
(2)证明:B1F∥平面A1BE.

查看答案和解析>>

同步练习册答案