精英家教网 > 高中数学 > 题目详情
11.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}-\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$|,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 根据题意和向量的数量积化简$|\overrightarrow{a}+\overrightarrow{b}{|}^{2}+|\overrightarrow{a}-\overrightarrow{b}{|}^{2}=2(|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2})$,求出向量$\overrightarrow{a},\overrightarrow{b}$的关系,再将式子$\sqrt{3}$|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$|两边平方,化简后可求出向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

解答 解:∵|$\overrightarrow{a}-\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$|,且$|\overrightarrow{a}+\overrightarrow{b}{|}^{2}+|\overrightarrow{a}-\overrightarrow{b}{|}^{2}=2(|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2})$,
∴$|\overrightarrow{a}{|}^{2}+3|\overrightarrow{a}{|}^{2}=2(|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2})$,化简可得,$|\overrightarrow{a}|=|\overrightarrow{b}|$,
由$\sqrt{3}$|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$|得,|$\overrightarrow{a}+\overrightarrow{b}$|=|$\overrightarrow{a}$|,
两边平方可得,${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}={\overrightarrow{a}}^{2}$,
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$-\frac{1}{2}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是$\frac{2π}{3}$,
故选:D.

点评 本题考查向量的数量积运算的综合应用,以及结论:$|\overrightarrow{a}+\overrightarrow{b}{|}^{2}+|\overrightarrow{a}-\overrightarrow{b}{|}^{2}=2(|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2})$,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,AB是圆O的直径,C、F为圆O上点,CA是∠BAF的角平分线,CD与圆O切于点C且交AF的延长线于点D,CM⊥AB,垂足为点M,求证:
(1)CD⊥AD;
(2)若圆O的半径为1,∠BAC=30°,试求DF•AM的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过抛物线C:y2=2px(p>0)的焦点F作直线交抛物线于A、B两点,O为坐标原点,|AB|=8p,且S△AOB=4,则p的值为(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$.且过点($\frac{\sqrt{6}}{2}$,1).
(1)求椭圆C的标准方程;
(2)设直线l过椭圆C的右焦点F且与椭圆C交于A,B两点,在椭圆C上是否存在点P,使得当l绕F转到某一位置时,有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐标与l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点F(-c,0)(c>0)是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点,过F且平行于双曲线渐近线的直线与圆x2+y2=c2交于另一点P,且点P在抛物线y2=4cx上,则该双曲线的离心率的平方是$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设F1(-c,0),F2(c,0)分别是椭圆E:$\frac{x^2}{a^2}$+${\frac{y}{b^2}^2}$=1(a>b>0)的左、右焦点.
(Ⅰ)若点P($\sqrt{3}$,2)在椭圆E上,且c=$\sqrt{3}$,求椭圆E的方程;
(Ⅱ)已知椭圆E的离心率为$\frac{{\sqrt{2}}}{2}$,若过点F1(-c,0)的直线交椭圆E于A,B两点,且|AF1|=3|F1B|.证明:AB⊥AF2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,椭圆C上的动点到焦点距离的最小值为$\sqrt{2}$-1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆C上一点,若过点M(2,0)的直线l与椭圆C相交于不同的两点S和T,满足$\overrightarrow{OS}$$+\overrightarrow{OT}$=t$\overrightarrow{OP}$(O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.过平面α外一直线m,作平面与α平行,这样的平面有0或1个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设点P为圆O:x2+y2=4上的一动点,点Q为点P在x轴上的射影,动点M满足:$\overrightarrow{MQ}$=$\frac{1}{2}$$\overrightarrow{PQ}$.
(1)求动点M的轨迹E的方程;
(2)过点F(-$\sqrt{3}$,0)作直线l交圆O于A、B两点,交(1)中的轨迹E于点C、D两点,问:是否存在这样的直线l,使得$\sqrt{|AF|•|BF|}$=$\frac{|CF|+|DF|}{2}$成立?若存在,求出所有的直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案