精英家教网 > 高中数学 > 题目详情

已知函数f(x)="2" sin(0≤x≤5),点A、B分别是函数y=f(x)图像上的最高点和最低点.
(1)求点A、B的坐标以及·的值;
(2)没点A、B分别在角的终边上,求tan()的值.

(1).(2)

解析试题分析:(1),   1分
.   2分
,即时,取得最大值
,即时,取得最小值. 
因此,点的坐标分别是.      4分
.   6分
(2)分别在角的终边上,
,             8分
,       10分
. 12分
考点:三角函数的图象与性质;三角函数的定义;平面向量的数量积;和差公式。
点评:本题主要考查了三角函数的图象与性质,三角函数的定义以及平面向量的数量积等基础知识,考查了学生简单的数学运算能力.我们做三角函数的大题的要求是得满分,因此,三角函数的有关问题虽说简单,但我们在平常也要练习到位。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(I)证明:
(II)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)对于二次函数
(1)指出图像的开口方向、对称轴方程、顶点坐标;
(2)求函数的最值;
(3)分析函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足
,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本);
(2)工厂生产多少台产品时,可使盈利最多?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
专家通过研究学生的学习行为,发现学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设表示学生注意力随时间(分钟)的变化规律(越大,表明学生注意力越大),经过试验分析得知:
(Ⅰ)讲课开始后多少分钟,学生的注意力最集中?能坚持多少分钟?
(Ⅱ)讲课开始后5分钟时与讲课开始后25分钟时比较,何时学生的注意力更集中?
(Ⅲ)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲完这道题目?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知,且直线与曲线相切.
(1)若对内的一切实数,不等式恒成立,求实数的取值范围;
(2)当时,求最大的正整数,使得对是自然对数的底数)内的任意个实数都有成立;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
一种放射性元素,最初的质量为500g,按每年10﹪衰减.
(Ⅰ)求t年后,这种放射性元素质量ω的表达式;
(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分分)已知函数是不同时为零的常数).
(1)当时,若不等式对任意恒成立,求实数的取值范围;
(2)求证:函数内至少存在一个零点.

查看答案和解析>>

同步练习册答案