精英家教网 > 高中数学 > 题目详情
19.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

分析 (1)设出二次函数的表达式,列出方程组,考查即可求出抛物线的解析式;
(2)先求出抛物线和x轴交点的坐标,求出直线的解析式,从而求出M点的坐标;
(3)法一:先求出直线BC的解析式,进而求出PC的解析式,从而求出P点的坐标,法二:根据勾股定理求出即可.

解答 解:(1)设抛物线的解析式为y=ax2+bx+c,
则有:$\left\{\begin{array}{l}a-b+c=0\\ c=-3\\-\frac{b}{2a}=1\end{array}\right.$解得:$\left\{\begin{array}{l}a=1\\ b=-2\\ c=-3\end{array}\right.$,
所以抛物线的解析式为y=x2-2x-3.
(2)令x2-2x-3=0,解得x1=-1,x2=3,
所以B点坐标为(3,0),
设直线BC的解析式为y=kx+b,
则$\left\{\begin{array}{l}3k+b=0\\ b=-3\end{array}\right.$,解得$\left\{\begin{array}{l}k=1\\ b=-3\end{array}\right.$,
所以直线解析式是y=x-3;
当x=1时,y=-2,所以M点的坐标为(1,-2).
(3)方法一:要使∠PBC=90°,
则直线PC过点C,且与BC垂直,
又直线BC的解析式为y=x-3,
所以直线PC的解析式为y=-x-3,当x=1时,y=-4,
所以P点坐标为(1,-4).
方法二:设P点坐标为(1,y),
则PC2=12+(-3-y)2,BC2=32+32;PB2=22+y2
由∠PBC=90°可知△PBC是直角三角形,且PB为斜边,
则有PC2+BC2=PB2
所以:[12+(-3-y)2]+[32+32]=22+y2;解得y=-4,
所以P点坐标为(1,-4).

点评 本题考查了二次函数的性质的综合应用,考查求函数的解析式问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$).
(1)求函数y=f(x)的单调递减区间;
(2)求函数y=f(x)在x∈[0,$\frac{π}{2}$]内的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=x3+x,若0<θ≤$\frac{π}{2}$时,f(mcosθ)+f(1-m)>0恒成立,则实数m的取值范围是(  )
A.(-∞,1)B.(-∞,-1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.90×91×92×…×100=(  )
A.A${\;}_{100}^{10}$B.A${\;}_{100}^{11}$C.A${\;}_{100}^{12}$D.A${\;}_{101}^{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,角A,B,C所对边长分别为a,b,c,若(b-c)2-a2=-bc,则sinA=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(理)试卷(解析版) 题型:选择题

下列叙述正确的是( )

A.命题:,使的否定为:,均有

B.命题:若,则的逆命题为:若,则

C.已知,则幂函数为偶函数,且在上单调递减的充要条件为

D.函数的图像关于点中心对称的充分必要条件为

查看答案和解析>>

科目:高中数学 来源:2017届广西陆川县中学高三9月月考数学(文)试卷(解析版) 题型:解答题

中,所对的边为,且

(1)求的大小;

(2)若,求的面积并判断的形状.

查看答案和解析>>

科目:高中数学 来源:2017届广西陆川县中学高三9月月考数学(文)试卷(解析版) 题型:选择题

已知平面向量的夹角等于,如果,那么( )

A. B.9 C. D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{x+a}{{x}^{2}+2x+2}$.若方程f(x)=x-1有三个不同实数根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案