分析 由题意可知:焦点在x轴上,a=2,b=1,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{3}$,左焦点F1(-$\sqrt{3}$,0),设直线AB的方程为:y=x+$\sqrt{3}$,代入椭圆方程,由x1+x2=-$\frac{2\sqrt{3}}{\frac{5}{4}}$=-$\frac{8\sqrt{3}}{5}$,x1•x2=$\frac{8}{5}$,y1•y2=(x1+$\sqrt{3}$)(x2+$\sqrt{3}$)=-$\frac{1}{5}$,丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{8}{5}$,由两点之间的距离公式可知:丨F1A丨•丨F1B丨=$\sqrt{({x}_{1}+1)^{2}+{y}_{1}^{2}}$•$\sqrt{({x}_{2}+1)^{2}+{y}_{2}^{2}}$=2丨y1•y2丨,则$\frac{1}{|{F}_{1}A|}+\frac{1}{|{F}_{1}B|}$=$\frac{丨{F}_{1}A丨+丨{F}_{1}B丨}{丨{F}_{1}A丨•丨{F}_{1}B丨}$=$\frac{丨AB丨}{丨{F}_{1}A丨•丨{F}_{1}B丨}$,即可求得$\frac{1}{|{F}_{1}A|}+\frac{1}{|{F}_{1}B|}$的值.
解答 解:由椭圆的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1,焦点在x轴上,a=2,b=1,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{3}$,
则左焦点F1(-$\sqrt{3}$,0),设直线AB的方程为:y=x+$\sqrt{3}$,
∴$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=x+\sqrt{3}}\end{array}\right.$,整理得:$\frac{5}{4}$x2+2$\sqrt{3}$x+2=0,
设A(x1,y1),B(x2,y2),
由韦达定理可知:x1+x2=-$\frac{2\sqrt{3}}{\frac{5}{4}}$=-$\frac{8\sqrt{3}}{5}$,x1•x2=$\frac{8}{5}$,
y1•y2=(x1+$\sqrt{3}$)(x2+$\sqrt{3}$)=x1•x2+$\sqrt{3}$(x1+x2)+3=-$\frac{1}{5}$,
由弦长公式可知:丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{(-\frac{8\sqrt{3}}{5})^{2}-4×\frac{8}{5}}$=$\frac{8}{5}$,
丨F1A丨•丨F1B丨=$\sqrt{({x}_{1}+1)^{2}+{y}_{1}^{2}}$•$\sqrt{({x}_{2}+1)^{2}+{y}_{2}^{2}}$=2丨y1•y2丨
则$\frac{1}{|{F}_{1}A|}+\frac{1}{|{F}_{1}B|}$=$\frac{丨{F}_{1}A丨+丨{F}_{1}B丨}{丨{F}_{1}A丨•丨{F}_{1}B丨}$=$\frac{丨AB丨}{丨{F}_{1}A丨•丨{F}_{1}B丨}$=$\frac{\frac{8}{5}}{2×\frac{1}{5}}$=4,
故答案为:4.
点评 本题考查直线与椭圆的位置关系,考查韦达定理,两点之间的距离公式即弦长公式的应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 天数t(天) | 3 | 4 | 5 | 6 | 7 |
| 繁殖个数y(千个) | 2.5 | m | 4 | 4.5 | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a∈R,“$\frac{1}{a}$<1”是“a>1”的必要不充分条件 | |
| B. | “p∨q为真命题”的必要不充分条件是“p∧q为真命题” | |
| C. | 命题“?x∈R,使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0” | |
| D. | 命题p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,则¬p是真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {1,2,3} | C. | {3,5} | D. | {3,5,7} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com