分析 (1)当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=n,由此能求出数列{an}的通项公式.
(2)由已知:Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+…+$\frac{n}{{2}^{n}}$,由此利用错位相减法能求出数列{bn}的前n项和Tn,即可得出结论.
解答 解:(1)当n=1时,a1=S1=1
当n≥2时,an=Sn-Sn-1=n
经验证,a1=1满足上式,故数列{an}的通项公式an=n;…(6分)
(2)由题意,易得Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+…+$\frac{n}{{2}^{n}}$
∴$\frac{1}{2}$Tn=$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+…+$\frac{n}{{2}^{n+1}}$,
两式相减得$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=1-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$,
所以Tn=2-$\frac{n+2}{{2}^{n}}$…(10分)
由于Tn<2,又2-$\frac{n+2}{{2}^{n}}$=m,∴m=1,解得n=2.…(12分)
点评 本题考查数列的通项公式和前n项和的求法,考查错位相减法的合理运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0.7)6<log0.76<60.7 | B. | (0.7)6<60.7<log0.76 | ||
| C. | log0.76<60.7<(0.7)6 | D. | log0.76<(0.7)6<60.7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com