精英家教网 > 高中数学 > 题目详情
10.若$|\overrightarrow a|=2$,$|\overrightarrow b|=4$,向量$\overrightarrow a$与向量$\overrightarrow b$的夹角为120°,则向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影等于(  )
A.-3B.-2C.2D.-1

分析 根据投影的定义即可求出.

解答 解:向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影等于|$\overrightarrow{a}$|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=2×(-$\frac{1}{2}$)=-1,
故选:D

点评 本题主要考查向量投影的定义及求解的方法,公式与定义两者要灵活运用,考查运算能力,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知抛物线y2=2px(p>0)的准线为l,若l与圆x2+y2+6x+5=0的交点为A,B,且|AB|=2$\sqrt{3}$.则p的值为4或8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把函数f(x)=cos(2x+φ)的图象上所有的点向左平移$\frac{π}{6}$个单位长度后得到y=g(x)的图象,若y=g(x)的一个对称中心是($\frac{π}{6}$,0),则φ的一个可能取值是(  )
A.$\frac{π}{3}$B.$\frac{7π}{12}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,并且直线y=x+b是抛物线C2:y2=4x的一条切线.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)设点A,B分别是椭圆C1的左右顶点,F是椭圆C1的左焦点.若过点P(-2,0)的直线与椭圆C1相交于不同两点M,N.
①求证:∠AFM=∠BFN;②求△MFN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知$csinA=\sqrt{3}acosC$,(a-c)(a+c)=b(b-c),函数$f(x)=2sinxcos(\frac{π}{2}-x)-\sqrt{3}sin(π+x)cosx+sin(\frac{π}{2}+x)cosx$
(1)求函数y=f(x)的周期和对称轴方程;
(2)求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°.动点E和F分别在线段BC和DC上,且$\overrightarrow{BE}=λ\overrightarrow{BC},\overrightarrow{DF}=\frac{1}{9λ}\overrightarrow{DC}$.
(1)当λ=$\frac{1}{2}$,求|$\overrightarrow{AE}$|;
(2)求$\overrightarrow{AE}•\overrightarrow{AF}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,若将f(x)图象上所有点向右平移$\frac{π}{12}$个单位得到函数g(x)的图象,则函数g(x)的单调递减区间为(  )
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈ZB.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z
C.[kπ-$\frac{π}{12}$,kπ+$\frac{π}{12}$],k∈ZD.[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:(x+1)2+y2=8,点A(1,0),P是圆C上任意一点,线段AP的垂直平分线交CP于点Q,当点P在圆上运动时,点Q的轨迹为曲线E.
(1)求曲线E的方程;
(2)若直线l:y=kx+m与曲线E相交于M,N两点,O为坐标原点,求△MON面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$sinα+cosα=-\frac{{\sqrt{5}}}{2}$,且$\frac{5π}{4}<α<\frac{3π}{2}$,则cosα-sinα的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案