精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,∠BAC=60°,E,F分别是AP,AC的中点,点D在棱AB上,且AD=AC.求证:
(1)EF∥平面PBC;
(2)平面DEF⊥平面PAC.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)利用三角形中位线定理推导出EF∥PC,由此能证明EF∥平面PBC.
(2)由已知条件推导出△ACD为正三角形,DF⊥AC,从而得到DF⊥平面PAC,由此能证明平面DEF⊥平面PAC.
解答: 证明:(1)在△PAC中,因为E,F分别是AP,AC的中点,
所以EF∥PC.…(2分)
又因为EF?平面PBC,PC?平面PBC,
所以EF∥平面PBC.…(5分)
(2)连结CD.因为∠BAC=60°,AD=AC,
所以△ACD为正三角形.
因为F是AC的中点,所以DF⊥AC.…(7分)
因为平面PAC⊥平面ABC,DF?平面ABC,
平面PAC∩平面ABC=AC,
所以DF⊥平面PAC. …(11分)
因为DF?平面DEF,
所以平面DEF⊥平面PAC.…(14分)
点评:本题考查直线与平面平行的证明,考查平面与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列各函数的导函数:
(1)f(x)=kx+
ax2+bx+c

(2)f(x)=k
ax+b
+l
cx+d

(3)f(x)=
(x-a)2+b2
+
(x-c)2+d2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.
(Ⅰ)求证:直线l⊥平面PAC;
(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆T:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0).
(Ⅰ)若椭圆T的离心率为
5
3
,过焦点且垂直于z轴的直线被椭圆截得弦长为
8
3

①求椭圆方程;
②过点P(2,1)的两条直线分别与椭圆F交于点A,C和B,D,若AB∥CD,求直线AB的斜率;
(Ⅱ)设P(x0,y0)为椭圆T内一定点(不在坐标轴上),过点P的两条直线分别与椭圆T交于点A,C和B,D,且AB∥CD,类比(Ⅰ)②直接写出直线T的斜率.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R,a2+2b2+3c2=6,求a+b+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,又PA⊥底面ABCD,E为BC的中点.
(1)求证:AD⊥PE;
(2)设F是PD的中点,求证:CF∥平面PAE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1的一个焦点为F(2,0),且离心率为
6
3

(Ⅰ)求椭圆方程;
(Ⅱ)过点M(3,0)且斜率为k的直线与椭圆交于A,B两点,点A关于x轴的对称点为C,求△MBC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,E为对角线BD中点.现将△ABD沿BD折起到△PBD的位置,使平面PBD⊥平面BCD,如图2.
(Ⅰ)求证直线PE⊥平面BCD;
(Ⅱ)求证平面PBC⊥平面PCD;
(Ⅲ)已知空间存在一点Q到点P,B,C,D的距离相等,写出这个距离的值(不用说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD,AB=2,若将△ABD沿正方形的对角线BD所在的直线进行翻折,则在翻折的过程中,四面体A-BCD的体积的最大值是
 

查看答案和解析>>

同步练习册答案