分析 (1)利用五点法做函数y=Asin(ωx+φ)的在一个周期[0,π]上的图象.
(2)利用正弦函数的单调性求得f(x)在x∈[-π,0]的单调增区间.
(3)利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:(1)对于 函数f(x)=2sin(2x-$\frac{π}{3}}$),x∈R,由x∈[0,π],可得2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{5π}{3}$],列表如下:
| 2x-$\frac{π}{3}$ | -$\frac{π}{3}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | $\frac{5π}{3}$ |
| x | 0 | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{2π}{3}$ | $\frac{11π}{12}$ | π |
| f(x) | -$\sqrt{3}$ | 0 | 2 | 0 | -2 | -$\sqrt{3}$ |
点评 本题主要考查利用五点法做函数y=Asin(ωx+φ)的图象,正弦函数的单调性,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | ¬p∧¬q | C. | ¬p∧q | D. | p∧¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 重心 垂心 内心 | B. | 外心 垂心 重心 | C. | 重心 外心 内心 | D. | 外心 重心 内心 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | 9 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)=sin(4x+$\frac{π}{6}$) | B. | g(x)=sin(8x-$\frac{π}{3}$) | C. | g(x)=sin(x+$\frac{π}{6}$) | D. | g(x)=sin4x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2$\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com