9£®Ä³ÊнÌÓý¾ÖÑûÇë½ÌÓýר¼ÒÉîÈë¸ÃÊжàËùÖÐСѧ£¬¿ªÕ¹Ìý¿Î£¬·Ã̸¼°ËæÌüì²âµÈ»î¶¯£®ËûÃǰÑÊÕ¼¯µ½µÄ180½Ú¿Î·ÖΪÈýÀà¿ÎÌýÌѧģʽ£º½ÌʦÖ÷½²µÄΪAģʽ£¬ÉÙÊýѧÉú²ÎÓëµÄΪBģʽ£¬¶àÊýѧÉú²ÎÓëµÄΪCģʽ£¬A¡¢B¡¢CÈýÀà¿ÎµÄ½ÚÊý±ÈÀýΪ3£º2£º1£®
£¨¢ñ£©Îª±ãÓÚÑо¿·ÖÎö£¬½ÌÓýר¼Ò½«Aģʽ³ÆÎª´«Í³¿ÎÌÃģʽ£¬B¡¢Cͳ³ÆÎªÐ¿ÎÌÃģʽ£®¸ù¾ÝËæÌüì²â½á¹û£¬°Ñ¿ÎÌýÌѧЧÂÊ·ÖΪ¸ßЧºÍ·Ç¸ßЧ£¬¸ù¾Ý¼ì²â½á¹ûͳ¼ÆµÃµ½ÈçÏÂ2¡Á2ÁÐÁª±í£¨µ¥Î»£º½Ú£©
¸ßЧ·Ç¸ßЧ×ܼÆ
пÎÌÃģʽ603090
´«Í³¿ÎÌÃģʽ405090
×ܼÆ10080180
Çë¸ù¾Ýͳ¼ÆÊý¾Ý»Ø´ð£ºÓÐûÓÐ99%µÄ°ÑÎÕÈÏΪ¿ÎÌýÌѧЧÂÊÓë½ÌѧģʽÓйأ¿²¢ËµÃ÷ÀíÓÉ£®
£¨¢ò£©½ÌÓýר¼ÒÓ÷ֲã³éÑùµÄ·½·¨´ÓÊÕ¼¯µ½µÄ180½Ú¿ÎÖÐÑ¡³ö12½Ú¿Î×÷ΪÑù±¾½øÐÐÑо¿£¬²¢´ÓÑù±¾ÖеÄBģʽºÍCģʽ¿ÎÌÃÖÐËæ»ú³éÈ¡2½Ú¿Î£¬ÇóÖÁÉÙÓÐÒ»½Ú¿ÎΪCģʽ¿ÎÌõĸÅÂÊ£®
²Î¿¼ÁÙ½çÖµ±í£º
P£¨K2¡Ýk0£©0.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
²Î¿¼¹«Ê½£ºK2=$\frac{{n£¨ad-bc£©}^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
ÆäÖÐn =a +b +c +d£©£®

·ÖÎö £¨¢ñ£©ÓÉÁÐÁª±íÖеÄÊý¾Ý¼ÆËãËæ»ú±äÁ¿k2µÄ¹Û²âÖµ£¬ÓÉÁÙ½çÖµ±íÖÐÊý¾ÝµÃ³öͳ¼Æ·ÖÎö£»
£¨¢ò£©Çó³öÑù±¾ÖÐB¡¢CģʽµÄ¿ÎÌø÷Óм¸½Ú£¬ÓÃÁоٷ¨¼ÆËã»ù±¾Ê¼þÊý£¬Çó³ö¶ÔÓ¦µÄ¸ÅÂÊ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÁÐÁª±íÖеÄͳ¼ÆÊý¾Ý¼ÆËãËæ»ú±äÁ¿k2µÄ¹Û²âֵΪ£º
¡ßk2=$\frac{{n£¨ad-bc£©}^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
=$\frac{18{0£¨60¡Á50-40¡Á30£©}^{2}}{£¨60+40£©£¨30+50£©£¨60+30£©£¨40+50£©}$=9£¾6.635
ÓÉÁÙ½çÖµ±íP£¨k2¡Ý6.635£©¡Ö0.010£¬
¡àÓÐ99%µÄ°ÑÎÕÈÏΪ¿ÎÌÃЧÂÊÓë½ÌѧģʽÓйأ»  ¡­£¨6·Ö£©
£¨¢ò£©Ñù±¾ÖеÄBģʽ¿ÎÌúÍCģʽ¿ÎÌ÷ֱðÊÇ4½ÚºÍ2½Ú£¬
·Ö±ð¼ÇΪB1¡¢B2¡¢B3¡¢B4¡¢C1¡¢C2£¬´ÓÖÐÈ¡³ö2½Ú¿Î¹²ÓÐ15ÖÖÇé¿ö£º
£¨C1£¬B1£©£¬£¨C1£¬B2£©£¬£¨C1£¬B3£©£¬£¨C1£¬B4£©£¬£¨C2£¬B1£©£¬£¨C2£¬B2£©£¬
£¨C2£¬B3£©£¬£¨C2£¬B4£©£¬£¨C1£¬C2£©£¬£¨B1£¬B2£©£¬£¨B1£¬B3£©£¬£¨B1£¬B4£©£¬
£¨B2£¬B3£©£¬£¨B2£¬B4£©£¬£¨B3£¬B4£©  ¡­£¨8·Ö£©
ÖÁÉÙÓÐÒ»½Ú¿ÎΪCģʽ¿ÎÌõÄʼþΪ
£¨C1£¬B1£©£¬£¨C1£¬B2£©£¬£¨C1£¬B3£©£¬£¨C1£¬B4£©£¬£¨C2£¬B1£©£¬£¨C2£¬B2£©£¬
£¨C2£¬B3£©£¬£¨C2£¬B4£©£¬£¨C1£¬C2£©¹²9ÖÖ£»   ¡­£¨10·Ö£©
¡àÖÁÉÙÓÐÒ»½Ú¿ÎΪCģʽ¿ÎÌõĸÅÂÊΪP=$\frac{9}{15}$=$\frac{3}{5}$£®   ¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁË2¡Á2ÁÐÁª±íµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁË·Ö²ã³éÑù·½·¨µÄÓ¦ÓÃÎÊÌâÒÔ¼°ÓÃÁоٷ¨Çó¹Åµä¸ÅÐ͵ĸÅÂʵÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®º¯Êýf£¨x£©=ln£¨x-2x2£©µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬0£©¡È£¨$\frac{1}{2}$£¬+¡Þ£©B£®[0£¬$\frac{1}{2}$]C£®£¨0£¬$\frac{1}{2}$ £©D£®£¨-¡Þ£¬0]¡È[$\frac{1}{2}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÈýÀâ×¶C-ABDÖУ¬AB=AD=BD=BC=CD=2£¬OΪBDµÄÖе㣬¡ÏAOC=120¡ã£¬PΪACÉÏÒ»µã£¬QΪAOÉÏÒ»µã£¬ÇÒ$\frac{AP}{PC}$=$\frac{AQ}{QO}$=2£®
£¨¢ñ£©ÇóÖ¤£ºPQ¡ÎÆ½ÃæBCD£»
£¨¢ò£©ÇóÖ¤£ºPO¡ÍÆ½ÃæABD£»
£¨¢ó£©ÇóËÄÃæÌåABCDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Éèmin{p£¬q}±íʾp£¬qÖнÏСµÄÒ»¸ö£¬¸ø³öÏÂÁÐÃüÌ⣺
¢Ùmin{x2£¬x-1}=x-1£»
¢ÚÉè$¦È¡Ê£¨0{£¬_{\;}}\frac{¦Ð}{2}]$£¬Ôòmin$\{\frac{sin¦È}{{{{sin}^2}¦È+1}}{£¬_{\;}}\frac{1}{2}\}=\frac{1}{2}$£»
¢ÛÉèa£¬b¡ÊN*£¬Ôòmin$\{a{£¬_{\;}}\frac{2b}{{{a^2}+{b^2}}}\}$µÄ×î´óÖµÊÇ1£¬
ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÓУ¨¡¡¡¡£©
A£®¢ÙB£®¢ÛC£®¢Ù¢ÚD£®¢Ù¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®½«ÀⳤΪ1µÄÕý·½Ìå½ØÈ¥Èô¸É¸ö½Çºó£¬µÃµ½Ä³¼¸ºÎÌåµÄÈýÊÓͼ£¬ÈçͼËùʾ£¬ËüÃǶ¼ÊDZ߳¤Îª1µÄÕý·½ÐΣ¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{2}$C£®$\frac{2}{3}$D£®$\frac{5}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Éèmin{p£¬q}±íʾp£¬qÁ½ÕßÖеĽÏСÕߣ¬Èôº¯Êýf£¨x£©=min{3-x£¬log2x}£¬ÔòÂú×ãf£¨x£©¡Ü$\frac{1}{2}$µÄxµÄ¼¯ºÏΪ£¨¡¡¡¡£©
A£®£¨0£¬2]¡È[$\frac{5}{2}$£¬+¡Þ£©B£®[$\sqrt{2}$£¬$\frac{5}{2}$]C£®£¨0£¬$\sqrt{2}$]¡È[$\frac{5}{2}$£¬+¡Þ£©D£®£¨0£¬$\sqrt{2}$£©¡È£¨$\frac{5}{2}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=ex£¬x¡ÊR£®
£¨¢ñ£© Ö¤Ã÷£ºÇúÏßy=f£¨x£©ÓëÇúÏßy=x+1ÓÐΨһ¹«¹²µã£»
£¨¢ò£©£¨i£©Çóg£¨x£©=x+2+£¨x-2£©•f£¨x£©ÔÚ[0£¬+¡Þ£©µÄ×îСֵ£»
£¨ii£©ÈôʵÊýa£¬b²»ÏàµÈ£¬ÊԱȽÏ$\frac{f£¨a£©+f£¨b£©}{2}$Óë$\frac{f£¨b£©-f£¨a£©}{b-a}$µÄ´óС£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄͼÏóÈçͼËùʾ£¬ÎªµÃµ½g£¨x£©=cos¦ØxµÄͼÏó£¬ÔòÖ»Òª½«f£¨x£©µÄͼÏ󣨡¡¡¡£©
A£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶ÈB£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»³¤¶È
C£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»³¤¶ÈD£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»³¤¶È

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÉèÖ±Ïßx-3y+m=0£¨m¡Ù0£©ÓëË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÁ½Ìõ½¥½üÏß·Ö±ð½»ÓÚµãA£¬B£¬ÈôµãP£¨m£¬0£©Âú×ã|PA|=|PB|£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{\sqrt{5}}{2}$B£®$\frac{3}{2}$C£®$\frac{5}{2}$D£®$\sqrt{5}$+1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸