精英家教网 > 高中数学 > 题目详情
19.设直线x-3y+m=0(m≠0)与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线分别交于点A,B,若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\sqrt{5}$+1

分析 先求出A,B的坐标,可得AB中点坐标为($\frac{m{a}^{2}}{9{b}^{2}-{a}^{2}}$,$\frac{3m{b}^{2}}{9{b}^{2}-{a}^{2}}$),利用点P(m,0)满足|PA|=|PB|,可得$\frac{\frac{3m{b}^{2}}{9{b}^{2}-{a}^{2}}-0}{\frac{m{a}^{2}}{9{b}^{2}-{a}^{2}}-m}$=-3,从而可求双曲线的离心率.

解答 解:由双曲线的方程可知,渐近线为y=±$\frac{b}{a}$x,
分别与x-3y+m=0(m≠0)联立,解得A(-$\frac{am}{a-3b}$,-$\frac{bm}{a-3b}$),B(-$\frac{am}{a+3b}$,$\frac{bm}{a+3b}$),
∴AB中点坐标为($\frac{m{a}^{2}}{9{b}^{2}-{a}^{2}}$,$\frac{3m{b}^{2}}{9{b}^{2}-{a}^{2}}$),
∵点P(m,0)满足|PA|=|PB|,
∴$\frac{\frac{3m{b}^{2}}{9{b}^{2}-{a}^{2}}-0}{\frac{m{a}^{2}}{9{b}^{2}-{a}^{2}}-m}$=-3,
∴a=2b,
∴c=$\sqrt{5}$b,
∴e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故选:A.

点评 本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某市教育局邀请教育专家深入该市多所中小学,开展听课,访谈及随堂检测等活动.他们把收集到的180节课分为三类课堂教学模式:教师主讲的为A模式,少数学生参与的为B模式,多数学生参与的为C模式,A、B、C三类课的节数比例为3:2:1.
(Ⅰ)为便于研究分析,教育专家将A模式称为传统课堂模式,B、C统称为新课堂模式.根据随堂检测结果,把课堂教学效率分为高效和非高效,根据检测结果统计得到如下2×2列联表(单位:节)
高效非高效总计
新课堂模式603090
传统课堂模式405090
总计10080180
请根据统计数据回答:有没有99%的把握认为课堂教学效率与教学模式有关?并说明理由.
(Ⅱ)教育专家用分层抽样的方法从收集到的180节课中选出12节课作为样本进行研究,并从样本中的B模式和C模式课堂中随机抽取2节课,求至少有一节课为C模式课堂的概率.
参考临界值表:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
其中n =a +b +c +d).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\frac{{f}^{′}(x)}{a(x+1)(x-a)}$是函数 f(x)的导函数,若 f(x)在x=a处取得极大值,则实数a的取值范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面区域$\left\{\begin{array}{l}0≤x≤2\\ 0≤y≤2\end{array}\right.$内任取一点P(x,y),若(x,y)满足x+y≤b的概率大于$\frac{1}{8}$,则b的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,点C是圆O的直径BE的延长线上一点,AC是圆O的切线,A是切点,∠ACB的平分线CD与AB相交于点D,与AE相交于点F.
(1)求∠ADF的值;
(2)若AB=AC,求$\frac{AC}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,若输出实数k的值为4,则框图中x的值是(  )
A.4B.16C.24D.120

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow a=(2,1),\overrightarrow b=(m,m-1)$,若$\overrightarrow a∥3\overrightarrow b$,则实数m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等比数列{an}为递增数列,a1=-2,且2(an+an+2)=5an+1,则公比q=$\frac{1}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a,b,c∈R,abc≠0,方程ax2+bx+c=0有虚根z,且z3∈R,求证:a、b、c成等比数列.

查看答案和解析>>

同步练习册答案