【题目】某大学的
名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐
名同学(乘同一辆车的
名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的
名同学中恰有
名同学是来自于同一年级的乘坐方式共有( ).
A.
种 B.
种 C.
种 D.
种
科目:高中数学 来源: 题型:
【题目】在直角坐标系xoy中,直线l的参数方程为
(t为参数)在极坐标系
与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴
中,曲线C的方程为
.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)设曲线C与直线l交于点A、B,若点P的坐标为(1,1),求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
抛物线
上存在一点
到焦点
的距离等于3.
(1)求抛物线
的方程;
(2)过点
的直线
与抛物线
相交于
两点(
两点在
轴上方),点
关于
轴的对称点为
,且
,求
的外接圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:
=a1a4﹣a2a3 , 若函数f(x)=
,将其图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( )
A.![]()
B.
π![]()
C.![]()
D.
π![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若直线
与曲线
满足下列两个条件:(
)直线
在点
处与曲线
相切; (
)曲线
在点
附近位于直线
的两侧,则称直线
在点
处“切过”曲线
.下列命题正确的是__________.(写出所有正确命题的编号)
①直线
在点
处“切过”曲线
;
②直线
在点
处“切过”曲线
;
③直线
在点
处“切过”曲线
;
④直线
在点
处“切过”曲线
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
为奇函数.
(1)求实数k的值;
(2)判断函数f(x)在(3,+∞)上的单调性,并利用定义证明;
(3)解关于x的不等式f(2x+6)>f(4x+3×2x+3).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,且椭圆
经过点
,
,抛物线
过点
.
(Ⅰ)求
、
的标准方程;
(Ⅱ)请问是否存在直线
满足条件:
①过
的焦点
;②与
交不同两点
、
且满足
.
若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线L:x2=2py(p>0)的焦点F且斜率为
的直线与抛物线L在第一象限的交点为P,且|PF|=5. ![]()
(1)求抛物线L的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=kx+t交抛物线L于不同的两点M、N,若抛物线上一点C满足
=λ(
+
)(λ>0),求λ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com