精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=aex﹣x﹣1,a∈R.
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,f(x)>0恒成立,求a的取值范围;
(Ⅲ)求证:当x∈(0,+∞)时,ln

【答案】解:(Ⅰ)当a=1时,则f(x)=ex﹣x﹣1,f'(x)=ex﹣1;
令f'(x)=0,得x=0;
∴当x<0时,f'(x)<0,f(x)在(﹣∞,0)上单调递减;
当x≥0时,f'(x)≥0,h(x)在(0,+∞)上单调递增;
即a=1时,f(x)的单调减区间为(﹣∞,0),单调赠区间为[0,+∞);
(Ⅱ)∵ex>0;
∴f(x)>0恒成立,等价于 恒成立;
,x∈(0,+∞),
当x∈(0,+∞)时,g′(x)<0;
∴g(x)在(0,+∞)上单调递减;
∴x∈(0,+∞)时,g(x)<g(0)=1;
∴a≥1;
∴a的取值范围为[1,+∞);
(Ⅲ)证明:当x∈(0,+∞)时, 等价于ex﹣xex﹣1>0;
设h(x)=ex﹣xex﹣1,x∈(0,+∞),
由(Ⅱ)知,x∈(0,+∞)时,ex﹣x﹣1>0恒成立;

∴h′(x)>0;
∴h(x)在(0,+∞)上单调递增;
∴x∈(0,+∞)时,h(x)>h(0)=0;
因此当x∈(0,+∞)时,
【解析】(Ⅰ)a=1时得出f(x),进而得到f′(x)=ex﹣1,这样便可判断导数符号,根据符号即可得出f(x)的单调区间;(Ⅱ)可以由f(x)>0恒成立得到 恒成立,这样设 ,求导,根据导数符号便可判断g(x)在(0,+∞)上单调递减,这便可得到g(x)<1,从而便可得出a的取值范围;(Ⅲ)容易得到 等价于ex﹣xex﹣1>0,可设h(x)=ex﹣xex﹣1,求导数,并根据上面的f(x)>0可判断出导数h′(x)>0,从而得到h(x)>h(0)=0,这样即可得出要证明的结论.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的最大值;

(2)设 其中,证明: <1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为(
A.12
B.1 6
C.18
D.20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是 . (填序号)
①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;
②在同一平面直角坐标系中,y=2x与y=2x的图象关于y轴对称;
③y=( x是增函数;
④定义在R上的奇函数f(x)有f(x)f(﹣x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{bn}(bn>0)的首项为1,且前n项和Sn满足Sn﹣Sn1= + (n≥2).
(1)求{bn}的通项公式;
(2)若数列{ }前n项和为Tn , 问Tn 的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个命题p:x∈R,sinx+cosx>m恒成立,q:x∈R,y=(2m2﹣m)x为增函数.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为梯形, ,且 是边长为2的正三角形,顶点上的射影为点,且 .

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn , 已知a1=10,a2为整数,且Sn≤S4 , 设 ,则数列{bn}的前项和Tn为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足为等比数列,且

1)求

2)设,记数列的前项和为

①求

②求正整数 k,使得对任意均有.

查看答案和解析>>

同步练习册答案