精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求函数的最大值;

(2)设 其中,证明: <1.

【答案】(10;(2)证明过程详见解析.

【解析】试题分析:(1)先求导,从而求出增区间为,减区间为,;(2)由(1)知,所以当, 成立,当, ,,所以,所以成立.

试题解析:

1f(x)=-xex

x∈(0)时,f(x)0f(x)单调递增;

x∈(0,+∞)时,f(x)0f(x)单调递减.

所以f(x)的最大值为f(0)0

2)由()知,当x0时,f(x)0g(x)01

当-1x0时,g(x)1等价于设f(x)x

h(x)f(x)x,则h(x)=-xex1

x∈(10)时,0<-x10ex1,则0<-xex1

从而当x∈(10)时,h(x)0h(x)(10]单调递减.

当-1x0时,h(x)h(0)0,即g(x)1

综上,总有g(x)1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥中,侧面 是全等的直角三角形, 是公共的斜边且 ,另一侧面是正三角形.

(1)求证:

(2)若在线段上存在一点,使与平面角,试求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣1,1)上的函数f(x)是奇函数,且函数f(x)在(﹣1,1)上是减函数,则满足f(1﹣a)+f(1﹣a2)<0的实数a的取值范围是(
A.[0,1]
B.(﹣2,1)
C.[﹣2,1]
D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)满足,对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤ (x+2)2成立.
(1)证明:f(2)=2;
(2)若f(﹣2)=0,求f(x)的表达式;
(3)在(2)的条件下,设g(x)=f(x)﹣ x,x∈[0,+∞),若g(x)图象上的点都位于直线y= 的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,图象关于原点中心对称且在定义域上为增函数的是(
A.
B.f(x)=2x﹣1
C.
D.f(x)=﹣x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2m)(x+m+3)(其中m<﹣1),g(x)=2x﹣2.
(1)若命题p:log2[g(x)]≥1是假命题.求x的取值范围;
(2)若命题q:x∈(﹣∞,3).命题r:x满足f(x)<0或g(x)<0为真命题.¬r是¬q的必要不充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示是一个算法程序框图,在集合中随机抽取一个数值作为输入,则输出的的值落在区间内的概率为

A. 0.8 B. 0.6 C. 0.5 D. 0.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=
(1)在下列直角坐标系中画出f(x)的图象;

(2)若f(x)=3,求x的值;
(3)看图象写出函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=aex﹣x﹣1,a∈R.
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,f(x)>0恒成立,求a的取值范围;
(Ⅲ)求证:当x∈(0,+∞)时,ln

查看答案和解析>>

同步练习册答案