分析 由函数f(x)是定义在R上的偶函数,且f(x)在[0,+∞)上为增函数,结合函数的对称性可将不等式f(log8x)>0,可化为f(|lo8x|)>f(2),解此不等式即可得到所求的解集.
解答 解:∵f(x)是定义在R上的偶函数,
∴f(log8x)>0,等价为:f(|log8x|)>f(2),
又f(x)在[0,+∞)上为增函数,
∴|log8x|>2,∴log8x>2或log8x<-2,
∴x>64或0<x<$\frac{1}{64}$.
即不等式的解集为{x|x>64或0<x<$\frac{1}{64}$}
故答案为:(0,$\frac{1}{64}$)∪(64,+∞)
点评 本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | a>b>$\frac{a+b}{2}$>$\sqrt{ab}$ | B. | a>$\frac{a+b}{2}$>$\sqrt{ab}$>b | C. | a>$\frac{a+b}{2}$>b>$\sqrt{ab}$ | D. | a>$\frac{a+b}{2}$≥$\sqrt{ab}$>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,2] | B. | (-2,2) | C. | (-∞,2) | D. | (-∞,-2)∪(-2,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 300$\sqrt{3}$ | B. | 150$\sqrt{6}$ | C. | 150$\sqrt{3}$ | D. | 300$\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com