精英家教网 > 高中数学 > 题目详情
9.已知△ABC的三个顶点A,B,C及平面内一点P满足$\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{PC}$,则下列说法中正确的是(  )
A.P在△ABC的内部B.P在△ABC的边AB上
C.P在AB边所在的直线上D.P在△ABC的外部

分析 利用△ABC的三个顶点A,B,C及平面内一点P满足$\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{PC}$,可得P,B,A,C组成平行四边形,即可得出结论.

解答 解:因为△ABC的三个顶点A,B,C及平面内一点P满足$\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{PC}$,
所以P,B,A,C组成平行四边形,
所以P在△ABC的外部,
故选:D.

点评 本题考查平行四边形的加法法则,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可如肺颗粒物的含量,这个值越高,代表空气污染越严重:
PM2.5日均浓度0~3535~7575~115115~150150~250>250
空气质量级别一级二级三级四级五级六级
空气质量类别轻度污染中度污染重度污染严重污染
甲市2015年2月份中有15对空气质量指数PM2.5进行监测,获得PM2.5日均浓度数据茎叶图如图所示.
(Ⅰ)在15天内任取2天,求甲市空气质量类别均为良的概率;
(Ⅱ)在15天内任取2天,记甲市空气质量级别不超过三级的天数为X,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,若|$\overrightarrow{c}$|=$\sqrt{10}$,则$\overrightarrow{c}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角的余弦值的最小值为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知四边形ABCD满足AD∥BC,BA=AD=DC=$\frac{1}{2}$BC=a,E是BC的中点,将△BAE沿着AE翻折成△B1AE,使面B1AE⊥面AECD,F,G分别为B1D,AE的中点.

(Ⅰ)求三棱锥E-ACB1的体积;
(Ⅱ)证明:B1E∥平面ACF;
(Ⅲ)证明:平面B1GD⊥平面B1DC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.图中的三个直角三角形是一个体积为30cm3的几何体的三视图,则侧视图中的h=6cm.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知P是等边△ABC所在平面外一点,PA=PB=PC=$\frac{2}{3}$,△ABC的边长为1,求PC和平面ABC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知一个组合体的三视图如图所示,请根据具体数据,求此几何体的表面积.(单位:cm)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列关于函数f(x)的图象中,可以直观判断方程f(x)-2=0在(-∞,0)上有解的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.射击比赛每人射2次,约定全部不中得0分,只中一弹得10分,中两弹得15分,某人每次射击的命中率均为$\frac{4}{5}$,则他得分的数学期望是12.8分.

查看答案和解析>>

同步练习册答案